Smågnageren er viktigere enn du tror

Skrevet av Eeva Marjatta Soininen, forskningsgruppen Northern Populations and Ecosystems

Smågnagerne er kanskje ikke de mest synlige dyrene når man går på tundraen i Nord-Norge. Men de sykliske svingningene i smågnagernes bestandstetthet utgjør pulsen i hele næringsnettet på tundraen. Smågnagerne er nemlig både viktige byttedyr og spiser mye planter. Så selv om vi ikke ser dem så ofte, så former de mye av plante- og dyrelivet rundt oss.

Norsk lemen er et spesielt viktig byttedyr for fjellrev og snøugle. Yngling av disse rovdyrartene på Varangerhalvøya er avhengig av at de har tilgang på lemen som mat (foto: Rolf. A Ims)

Alle rovdyrene på tundraen spiser smågnagere. Enkelte rovdyr, slik som fjellrev og snøugle, er spesielt avhengige av lemen. De yngler bare når det er toppår for gnagere. Andre rovdyr med mer generalisert diett, slik som rødrev og kråkefugler, yngler også mer i toppår med smågnagere. Dette systemet gjør at toppår for gnagere gir økning i bestandstettheten hos rovdyr. Det igjen gir negative ringvirkninger for andre byttedyrarter, som for eksempel rypa.

Smågnagerne har også betydning for plantelivet. I toppårene spiser smågnagerne til sammen store mengder planter. Det påvirker både plantesamfunnets biomasse og artssammensetning. Vi kan godt si at smågnagere vedlikeholder sine habitat. Både mose og dvergbusker på heiene hadde sett nokså annerledes ut uten gnagertopper.

Hva gjør klimaendringene med dette systemet?

Vi forventer varmere og våtere vintre som følge av klimaendringene. Mildværsperioder med regn om vinteren fører til at snøen smelter og fryser flere ganger. Dermed dannes islag i snødekket. Islag begrenser spesielt gnagernes tilgang til mat under snøen. Dette vil igjen kunne resultere i færre og sjeldnere gangertoppår. Så hva skjer med gnagerne når klimaet forandrer seg? Og hvordan påvirker forandringer i gnagersykluser resten av økosystemet?

Kameraene er plassert i metallkasser som har hull i begge ender. På denne måten er kameraboksen integrert som en del av gnagernes naturlige habitat. Kameraet sitter i taket og ser nedover, og tar bilde av alle dyr som passerer under (foto: Mike Murphy)

For å svare på disse spørsmålene, har vi utviklet et system for kameraovervåking av smågnagere. Arbeidet gjøres i regi av prosjektet Klimaøkologisk Observasjonssystem for Arktisk Tundra (COAT). I prosjektet har vi en egen forskningsmodul med fokus på gnagere.

Vi antar at klimaforandringene hovedsakelig påvirker gnagere via endringer i vinterklimaet. Det gjør det spesielt viktig å forstå hva som skjer under snøen. Nye typer viltkamera gjør det mulig å overvåke både røyskatt og snømus året rundt – også under snøen. Kameraene tar bilder av gnagere og rovdyr som er spesialisert på å spise dem.

Røyskatt med lemenbytte

Bildene gir oss mulighet til å observere dynamikken mellom rovdyr og gnagere, for eksempel å skille nedgang i gnagerbestand som skyldes predasjon fra nedgang som skyldes vanskelige snøforhold. I tillegg registrerer kameraene temperatur, som brukes til å beregne når gnagerne har vært under snøen.

Informasjon om snøforholdene brukes for å modellere effekten av snø på populasjonsdynamikk av gnagere.

Informasjon om smågnagernes bestandstetthet er viktig for en optimal forvaltning av utrydningstruede dyr, som for eksempel fjellreven. Smågnager-syklusene har en indirekte effekt på småvilt, som rypa. Informasjon om smågnagere kan hjelpe å forutsi småviltbestandens utvikling og dermed forvaltningen av småvilt.

Parallelt med utsetting av kamera og innsamling av bilder, har vi også jobbet med automatisering, optimalisering og modellering av bildene. Noen av bildene kan du se her.

I noen lokaliteter er det flere dyr som ofte kommer innom kamera. Her en røyskattfamilie, der tre ungdyr gjentatte ganger var på bildene.

 

Kan vi sette en pris på føling i fjæra?

Tekst av Margrethe Aanesen, Norges fiskerihøgskole, MarES – Changing use and values of marine ecosystem services in Arctic Norway

Mange land, deriblant Norge, har sluttet seg til ideen om “blå vekst”. Det betyr at mye av den økonomiske veksten i årene framover skal komme i marine og maritime næringer. I utgangspunktet er dette godt nytt for et institutt som er dedikert til marine næringer. Forskere ved Norges fiskerihøgskole jobber ikke bare med marin næringsutvikling, men også potensielle konsekvenser av vekst i de blå næringene. Det har vi gjort lenge før “blå vekst” strategien ble unnfanget.

I Nord-Norge har det kommet mange planer for økt næringsaktivitet i kystsonen. Kommunene Balsfjord, Karlsøy, Lyngen, Målselv og Tromsø har vedtatt en felles kystplan for Tromsøregionen.

Oppdrettsanlegg (foto: Andrey Armyagov)

Noen kaller planen en «oppdrettsplan» fordi den foreslår en betydelig økning i areal avsatt til oppdrett av laks i området. I tillegg til vekstplaner for oppdrett i kystsonen, så har det, i alle fall før korona, blitt etablert nye fisketurismeanlegg langs kysten i nord. Det skjer til tross for at mange norske fritidsfiskere stiller spørsmålstegn ved det de mener er sløsing med fisk i turistfiske. Og så har vi fjordene våre, hvor det i noen tilfeller åpnes opp for sjødeponi. Hva betyr så alt dette?

Næringsutvikling basert på bruk av naturressurser må ikke bare være økologisk bærekraftig, den må også være sosialt bærekraftig. Med sosial bærekraft mener vi at befolkningen som bor i områdene aksepterer utviklingen. Det betyr også at det er mer lønnsomt for samfunnet at næringsaktører får en eksklusiv tilgang til våre felles marine ressurser, enn at de er allment tilgjengelig.

(foto: Julide Ceren Ahi)

For det er ikke slik at dersom oppdrettsselskap, fisketuristanlegg eller gruveselskap ikke får bruke ressursene og tjenestene som havet gir, så er det ingen som bruker dem. De ressursene som «blå vekst» strategien gir næringsaktører tilgang til, har alle en såkalt alternativ-averdi. Det betyr den velferden eller nytten ressursene gir hvis de er allment tilgjengelige og ikke brukes til næringsvirksomhet. Problemet er at mens næringsaktører kan operere med priser på det de bruker ressursene til, så kan den allmenne bruken av de marine ressursene oftest ikke måles i penger. For hva er markedsprisen på grilling i fjæra, å hente seg koksei til et sommerkveldsmåltid, å kunne bade i sjøen, eller bare sitte og høre på den særegne stillheten i fjæra? Det er vanskelig for politikerne å ta gode beslutninger om hvordan samfunnet skal bruke våre felles marine ressurser, når noen ressurser kan måles i priser mens andre ikke kan det. Da er det lett for at de som kan måles i priser vinner. Er det i det hele tatt mulig å sette priser på «føling i fjæra»?

(foto: Katja Kircher, Mostphotos)

I MarES-prosjektet har vi undersøkt dette. Vi har utført valgeksperiment ut fra kystplanen for Tromsøregionen, planene for gjenåpning av gruvevirksomhet i Repparfjorden, og planer for vekst i turistfiske i kystsamfunn i Nord-Norge. Dagens planer for utvikling i disse næringene presenteres som ett alternativ. Og så lager vi andre alternativ der den planlagte næringsaktiviteten enten ikke finner sted, eller er redusert. – Om man velger alternativ med lav eller ingen næringsaktivitet, så må man være villig til å betale mer i skatt som kompensasjon for bortfall av inntektene og jobbene næringsaktiviteten ville gitt. I valgeksperimentet beskrives både fordelene med den planlagte næringsvirksomheten, som skatteinntekter og jobber, og ulempene, som fare for forurensing og ødeleggelse av marine økosystem. Den økte skatten som følger med de alternative planene, gjør at vi kan beregne priser på tjenester som kysten og de marine ressursene gir oss allmennbrukere.

Så hva er prisene folk setter på de «gratis» tjenestene vi nyter godt av langs kysten? Når det gjelder oppdrettsplanen, så beregnet vi hva det var verdt for folk som bor i de fem kommunene i og rundt Tromsø å få redusert antall nye lokaliteter. Det viktigste for dem var å få redusert potensiell forurensing av havbunnen. For det var hver person villig til å betale rundt 600 kroner mer i skatt per år. De var også villige til å betale for å redusere faren for at oppdrett påvirker kysttorsken negativt. Her var betalingsvilligheten 260 kroner per person per år. Noe overraskende var det at de som deltok i undersøkelsen bare var villige til å betale rundt 170 kroner per person per år for å redusere negative effekter på villaksen. På den andre siden var folk ikke villige til å betale noe for å redusere sjenerende utsikt eller støy fra oppdrettsanlegg. Det kan skyldes at de ikke synes det å se og høre oppdrettsanlegg er sjenerende.

(foto: Julide Ceren Ahi)

Når det gjelder fisketurisme, undersøkte vi først om folk var villige til å betale mer skatt for at myndighetene skulle jobbe mer for å øke kysttorskbestandene – noe de var. Hver person var i snitt villig til å betale over 900 kroner mer i skatt per år for det. Videre ba vifolk om å angi hvordan de ønsket å fordele ressursen kysttorsk mellom kystfiskere, fisketurister og private fritidsfiskere som dem selv. Her var det en helt entydig tilbakemelding om at folk ikke ønsket å regulere kystfiskerne strengere, mens de aksepterte at de selv som private fritidsfiskere ble strengere regulert, dersom også turistfiskere ble det. I de to nevnte undersøkelsene var resultatene relativt klare og entydige.

Det var de ikke i gruveundersøkelsen. Der spurte vi om folk var villige til å betale mer i skatt for å få redusert planene for ny gruvevirksomhet i Repparfjorden. Vi tok ikke opp diskusjonen for eller imot gruvevirksomheten. Også her var det forurensingen av havbunnen som var det viktigste for folk. Hver person var i snitt villig til å betale over 1000 kroner i skatt for at gruveselskapet skulle gjøre tiltak slik at havbunnen fortest mulig skulle bli rehabilitert. Folk var også villige til å betale 550 kr per person for å unngå negative effekter av gruvevirksomheten på villaksen i Repparfjordelva. De var derimot ikke villige til å betale noe for å få lokale arbeidsplasser i gruvevirksomheten.

Så hva sier disse resultatene oss? Resultatene er et første forsøk på å finne priser på goder som ikke omsettes i marked, og som derfor ikke har en markedspris. Likevel er de viktige for vår velferd. Problemet er at de ofte blir oversett av beslutningstakere fordi de ikke har priser. Da kan de ta beslutninger som er langt fra optimale for samfunnet, det vil si oss.

Forskningsprosjektet MarES – Changing use and values of marine ecosystem services in Arctic Norway har fått støtte fra Norges Forskningsråd i perioden 2017-2020 og avsluttes 31.12.2020. Prosjektet har vært ledet av professor Margrethe Aanesen ved Norges fiskerihøgskole, og i tillegg har professor Claire Armstrong, professor Vera Hausner og stipendiat Julide Ceren Ahi deltatt fra UiT. Nasjonale samarbeidspartnere er Akvaplan-niva, NMBU, Universitetet i Stavanger, og Menon. Prosjektet har hatt en internasjonal ekspertgruppe bestående av økonomer som jobber med naturressurser fra UK, Danmark og Canada, og en styringsgruppe med representanter fra Fiskeridirektoratet og Fylkesmannen i Troms sin miljøvernavdeling.

Hjernens termostat

Skrevet av Vebjørn Jacobsen Melum, forskningsgruppen Arctic Chronobiology and Physiology 

Jorda roterer rundt sin egen akse og samtidig går den i en elliptisk bane rundt sola. Ved å rotere rundt sin egen akse skaper den natt og dag for majoriteten av verdens befolkning. Ved å gå i bane rundt sola skapes årstider. Både natt og dag og årstider er rytmiske hendelser som gjentar seg, dag etter dag, og år etter år. I de polare områdene er de lysmessige endringene gjennom et år fenomenale. Det går fra 24 timer med mørke til 24 timer med fullt dagslys. Som en følge av denne ekstreme endringen i lysinnstråling og temperatur er det store svingninger i planteproduksjon. For dyr som lever av å spise planter, går det fra perioder med overflod til perioder med minimal næringstilgang. For å overleve i et slikt miljø, hele året, kreves intrikate tilpasninger. Det finnes utallige av dem, og en av dem er å gå i dvale i den del av året som byr på ugunstige næringsforhold.

Arktisk jordekorn (foto: Shona Wood)

Et av de mest ekstreme eksemplene er arktisk jordekorn. De lever i Nord-Amerika og Sibir, og tilbringer opp til 8 måneder av året under jorda i sine hi hvor de ligger i dyp dvale. Ved hjelp av denne livsstrategien sparer de energi, men hvordan kan de klare å svitsje mellom full aktivitet og en nærmest komatøs tilstand?

 

De fleste pattedyr har en kroppstemperatur på rundt 36-37 grader. Denne høye temperaturen sørger for effektiv drift av kroppslige funksjoner. Muskulatur eller fordøyelse fungerer uavhengige av dagens værmelding, på en helt annen måte enn hos vekselvarme dyr som frosk og slanger. Likevel har det en pris. En høy kroppstemperatur forutsetter et høyt stoffskifte (metabolsk aktivitet), altså at kroppen bruker mye energi bare på å holde seg i gang (hvilemodus). Derfor vil en lavere temperatur gi lavere metabolsk aktivitet og mindre energi vil brukes per tidsenhet (sparebluss). Og det er dette prinsippet dyr som kan gå i dvale utnytter til sin fordel, i en unik energisparende strategi. For mange gnagere, som arktisk jordekorn, er i stand til å senke kroppstemperaturen sin til nær omgivelsestemperaturen. «Verdensrekorden» er så lavt som -2.9 grader, det vil si under frysepunktet til vann! Hvordan i alle dager kan et pattedyr tolerere å ha en så lav kroppstemperatur og hva er det som utløser denne dramatiske endringen?

Hjernens termostat (illustrasjon: Shona Wood, Vebjørn J. Melum)

For å forstå det må vi se til hjernen. Inne i hjernen er det et kontrollsenter for kroppstemperatur. Den ledende teorien om hvordan et pattedyr kan nå minusgrader, er at hjernens termostatfunksjon er blitt skrudd ned til, nettopp, minusgrader. Hvis hjernen sier at minusgrader er greit, ja da iverksettes ingen motstandsmekanismer for å forhindre at kroppstemperaturen faller så lavt. Kroppen lar seg rett og slett kjøle ned av omgivelsene. Men hjernen aksepterer ikke alt. Det kommer en nedre grense for hva hjernen og kroppen tåler. Når grensen nås, ringer alarmbjellene.

Gnagerkroppen starter da å aktivt produsere varme, akkurat som en ovn som får beskjed av termostaten at temperaturen er for lav. Og sånn kan et arktisk jordekorn holde det gående. Det kan ligge i sitt hi, sammenkrøllet og holde en jevn kroppstemperatur på rundt minus 1 grad i en måned. Men, med så lave temperaturer, hvordan kan hjertet fortsette å slå slik at blodet sirkulerer? Hvordan kan cellene i hele dyret få det oksygenet og energien de trenger? Og hva skjer så etter en hel måned i denne tilstanden?

Hamster i dvale (foto: Vebjørn J. Melum)

Våken hamster (foto: Vebjørn J. Melum)

 

 

 

 

 

 

 

Etter en måned begynner temperaturen plutselig å stige igjen. Hurtig stiger den tilbake til «normal» kroppstemperatur på rundt 36-37 grader. Her holder den seg i noen timer, mens gnageren fortsatt ligger sammenkrøllet som en ball og tilsynelatende sover, før den returnerer ned til minusgradene. Hvordan hjernen igangsetter og kontrollerer vekslingen mellom dyp dvale og oppvåkning/gjenoppvarming vet vi fortsatt ikke. Vi vet heller ikke nøyaktig hvor hjernens termostatfunksjon er lokalisert, eller hvordan den blir regulert for å bestemme når et dyr skal gå inn i dvale.

Det vi vet er at det er et uhyre spennende forskningsområde som vi i forskningsgruppen Arktisk kronobiologi og fysiologi prøver å finne svar på. Om vi lykkes i å forstå hvordan jordekornet skrur ned hjernens termostat vil det ha potensiale til å kunne brukes i en rekke medisinske sammenhenger. Blant annet hvordan man kan minimere systemisk vevsskade ved hjertestans og slag, og hvordan man kan bevare organer som skal transplanteres.

Grandmaternal shadow on health inequalities

Written by Emre Sari, The Centre for Economic Research 

Inequalities, especially health inequality, are quite complex due to the economic, technological, and cultural developments of nations, and globalization. What is it that inspires economists to think ahead of their scope of expertise concerning social inequalities in health?

Health is one of the main determinants of well-being as an economic resource. It helps to measure the quality of human capital. On the other hand, differences in individual and even neighbourhood socioeconomic status are among the main mechanisms underlying health inequalities. When we take a more in-depth look at health inequalities for adults, it is clear that this problem cannot be fully explained only by adulthood health choices and socioeconomic status. – Even conditions in early life and mild shocks in the womb may affect health later in life.

In a current study, we focus on health transmission from grandmother to grandchild. We want to understand how the health of a grandchild gets effected by shiftings in ecenomy during the grandmother’s pregnancy of the grandchild’s mother.

Our question is: How far does the origin of our current health condition go?

Our research examined population counts in Rendalen, covering the period 1733-1925.

By testing an up-to-date hypothesis through a historical data set, we can open a door for understanding later in life health inequalities. Thanks to the fetal origins hypothesis, we know that our mother’s health and even her socioeconomic status have a significant impact on our health today. With this study, we take this one step further and include the grandmother to our health equation.

Ultimately, the next question is: Why is it important to understand the roots of our unfortunate health outcomes today? Except for acute injuries, some infectious and genetic diseases, there may be many resources behind your health outcomes. Life-style, education, income, occupational status, and neighbourhood, are factors affecting our health. Those variables can be changed somehow within your life span. However, what you inherited by birth cannot be reversed easily without identifying it clearly. Therefore, we must proceed to the very root of the problem and set the diagnosis correctly to intervene in time to prevent future negativities.

Emre Sari

Our findings are critical to shed light on health outcomes from an intergenerational perspective. However, many studies with more modern data should be conducted in the following years.

For future Research, we will investigate deeper into intergenerational mechanisms of health transmission, linking Tromsø Study Data (Tromsøundersøkelsen) with Norwegian Historical Population Register data.

 

 

References

  • Barker, D. J. P. (1990). The fetal and infant origins of adult disease. BMJ: British Medical Journal, 301(6761), 1111.
  • O’Donnell, O., Van Doorslaer, E., & Van Ourti, T. (2015). Health and inequality. Handbook of Income Distribution. https://doi.org/10.1016/B978-0-444-59429-7.00018-2
  • Schultz, T. W. (1961). Investment in human capital. American Economic Association, 51(1), 1–17.