FISHCOMM skal finne ut om friske celler kan hjelpe skadde celler i fisk

Et nytt forskningsprosjekt skal finne nye reparasjonssystemer i fisken.

Hvert år dør ca. 20% av oppdrettsfisk av skader fra sykdommer eller av fysiske skader. Når vevet til fisken er skadet settes fiskens reparasjonssystemer i gang for å få det til å gro. Noe ødelagt vev blir fikset og noe dør. Forskerne i FISHCOMM skal finne ut om friske celler bidrar til å hjelpe syke og skadde celler. De tror at friske celler kan overføre bittesmå organeller og mitokondrier til de skadde. Mitokondrier er livsviktige energifabrikker i cellene. De gjør at cellene kan omdanne energi og leve. Forskerne skal finne ut hva som setter i gang at de friske cellene gir mitokondrier til de skadde og hvordan de gjør det. De tror at infeksjoner og nanoplast er noe av det som kan stresse cellene så de blir dysfunksjonelle. De tror også at da hjelper friske celler med nødhjelp, som å sende over mitokondrier.

To hudceller fra laks. Mitokondrier i den ene cellen er farget med lilla fargestoff, mens de i den andre er farget med turkis fargestoff. Forskerne i FISHCOMM har funnet celler med begge mitokondriefarger i en celle, noe som tyder på overføring av mitokondrier fra den ene cella til den andre. Foto: Svartaas, Kjølstad, Wolfson, Dalmo.

Kunnskapen fra prosjektet vil øke forståelsen av mekanismene som er med å reparere syke celler. Økt kunnskap vil også øke velferden for dyrene i havbruket på sikt.

Prosjektet har fått 12 millioner av Forskningsrådet og skal pågå ut 2024. Partnere i prosjektet er UiT, Shanxi Universitet og Westminster Universitet.

Different paths to immune protection in humans and fish

Written by Agata Teresa Wyrozemska, doctoral research fellow at Fish Immunology and Vaccinology.

The interaction between bacteria, viruses and the organisms they try to infect is a never-ending race. The human body can defend itself against most unwanted pathogens (harmful bacteria and viruses), using the resources of innate and adaptive immunity. Innate immunity is the first line of defence and includes physical barriers, such as the skin and mucosal membranes lining the digestive tract, respiratory tract, etc. Natural reflexes like sneezing, coughing, and vomiting support the clearing of pathogens. The complement proteins and acute-phase proteins are also involved. In addition, some cells send signals in form of, for example cytokines, which trigger the innate and adaptive immune processes. The adaptive immune response develops through direct contact with pathogens; its mechanisms are triggered after the innate immunity and take time to develop. Adaptive immunity involves various specialized cells and molecules, including Major Histocompatibility complexes (MCH). There are different types of MHC molecules but their general function is to help the immune system recognize foreign substances and distinguish them from the self.

Do fish have the same capacity to combat infection as humans?

Anglerfish female with attached male. Copyright © 2020 Swann et. al.

Fish are the most numerous and diverse group of vertebrates, with nearly 21,000 species, more than all other types of vertebrates combined. Would it be logical, if such a large and diverse group followed only one immune defence strategy? Probably no, as in many other aspects of biology, this one too does not follow a simple scheme. Let us focus on bony fish, which anglers and fish-enthusiasts shall be well acquainted with, like cod and salmon. To spice things up, we will throw anglerfish into the mix. Anglerfish males, as a part of reproductive strategy, bite into the female and fuse with her. They form an intricate type of transplant. What is even more interesting, many males can fuse with one female. These seams counterintuitive, because in human transplants, the tissue of the donor must be compatible with the tissue of the recipient or the immune system will reject it. Imagine having multiple organs transplanted from random people. How is it possible that the fused male body is not rejected? This is dictated by a loss of key capabilities that characterize classical adaptive immunity in jawed vertebrates in the Anglerfish (Swann et al., 2020).In a nutshell, their ability to recognizing self from non-self is impaired. On the other hand, there is cod, which has lost one type of the MHC molecules in course of evolution. One may speculate that this loss has been compensated by a massive expansion of the other type of MCH molecules. (Star et al., 2011)

The challenges of fish vaccines

Atlantic salmon. “File:Salmo salar-Atlantic Salmon-Atlanterhavsparken Norway.JPG” by Hans-Petter Fjeld is licensed under CC BY-SA 2.5

Anglerfish is a curiosity, and while cod is more commonly known, it is  salmon that is the most popular in Norway. It is well-liked and often lands on our plates. Because of the high demand for salmon fillets, the fish has to be farmed. Thousands of fish are kept in large nets in sheltered waters such as fjords or bays. In dense populations, diseases spread fast. As we see with the Covid-19 outbreak, the major measure to prevent the spread of the virus is social distancing. Social distancing in fish farms is not possible. The most common measure to prevent  diseases among farmed fish, which drive economic losses, is vaccination. Pathogens causing diseases in salmon have been thoroughly examined. Numerous vaccines are available, but there is still room for improvement. It is important to thoroughly examine and understand the salmonid immune systems to create more effective vaccines. Salmon shares many immune features with humans. For instance presence of specific cells, like white blood cells, and immunity-related internal organs. However, there are some differences in their structures and functions as well. Salmon, like other bony fishes, does not have bone marrow. Fish also rely more on the innate immunity. The adaptive response appears later in course of infection and is less sophisticated than in humans. These differences are interesting and important. We at the Fish Immunology and Vaccinology group have a focus on exploring salmon’s immune system and contribute to expand the general knowledge and the formulation of new vaccines. More information about the group can be found here.

Article “The genome sequence of Atlantic cod reveals a unique immune system” by Star et. al. 2011. 

Article “The immunogenetics of sexual parasitism” by Swann et. al. 2020.

MOSAiC: An inside look at the largest Arctic expedition in history

Written by postdoctoral fellow Jessie Gardner, AMB.

MOSAiC was the largest ever expedition to the Arctic, with one purpose: to improve our understanding of climate change.Dr Jessie Gardner, from the Department of Arctic and Marine Biology (UiT), was on board during the summer and shares her insights from this exceptional scientific campaign.

Unravelling the mysteries of the Central Arctic Ocean

In 2019 the German research icebreaker, Polarstern, set sail from Tromsø bound for the Central Arctic Ocean, the epicentre of climate change. Once there, the ship allowed itself to become trapped in the ice for a year, drifting alongside an ice floe with the speed and direction of the winds and currents alone. The idea follows that of the Norwegian researcher and explorer Fridtjof Nansen, who set sail on the first ever drift expedition with his wooden sailing ship Fram 127 years ago. The Polarstern was laden with state-of-the-art scientific equipment. Throughout the year, 442 experts from 70 institutions in 20 different countries took part in the field campaign, which was supported by six other ships, several aircraft and hundreds of others on land.

The Polarstern reached the northern Laptev Sea by mid-October 2019, located a suitable ice floe and set up a small floating city of scientific instruments in time for the polar night. With temperatures plummeting to -42°C and fierce winds transforming the ice around them, researchers battled to sample the floe in the darkness. Ultimately, they succeeded, giving us a rare glimpse into the central Arctic Ocean environment during the winter while the sea ice thickened beneath their feet.

The Russian icebreaker Kapitan Dranitsyn alongside the Polarstern during the wintertime in the central Arctic Ocean. Photo: Esther Horvath.

Research expeditions into the central Arctic Ocean have traditionally be fraught with problems and MOSAiC was no exception. Some of them were predictable and had been considered during the decade of planning, such as the Russian icebreaker Kapitan Dranitsyn being much delayed by the strength of the winter ice pack. Other issues were completely unforeseen, like the declaration of a pandemic around the world- just as the spring rotation of participants, crew and re-supplies was planned.

It was this rotation that I was scheduled to be part of part of “Team ECO” and the HAVOC project (Ridges – Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic Ocean). HAVOC is the largest Norwegian project to participate in MOSAiC, led by the Norwegian Polar Institute and funded by the Research Council of Norway. HAVOC aims to investigate sea ice ridges and their role in the Arctic sea-ice system. However, there were moments where it seemed like the MOSAiC field campaign might have been abandoned completely…

How to continue research during a global pandemic

The first hint of the seriousness of coronavirus came after I had attended a polar bear protection training course at the beginning of March in Germany. We were all tested for corona as a precaution, and one of the participants tested positive! I received the news while making a pit stop in the U.K. and immediately went into 2 weeks of quarantine. During those 2 weeks, coronavirus shifted from being a distant issue to a severe threat around the world. Straight after, countries went into lockdown, borders closed and plans for the Spring personnel exchange from Svalbard to the Polarstern were abandoned.

The MOSAiC coordinators, led by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), worked tirelessly to find an alternative despite airports, military facilities and seaports worldwide shutting down. First, we gained special permission to travel to Germany, underwent testing and then quarantined in isolation for two weeks. After I boarded the research vessel Maria S Merian and spent another two weeks sailing to Svalbard, sleeping in a modified container chained to her deck. The Polarstern had to leave the camp and floe temporarily for the personnel exchange. Unfortunately, this was at the cost of capturing the crucial time when the ice begins to melt, but this is a small price to pay compared to abandoning the expedition altogether.

I could hardly believe it when we finally reached the floe. Photos of sea ice from above makes it seem like a vast expanse of white, flat nothingness but actually this landscape is a diverse and beautiful- littered with tall ice blocks, jagged ridges, leads, cracks and melt ponds which change before your eyes. Now, we could finally get stuck into the science!

Home sweet home! Extra accommodation was needed on the Maria S Merian so many of us slept in converted containers chained to the deck. Photo: Jessie Gardner.

Going with the “floe”

Team ECO collected thousands of samples and measured a diverse suite of ecological and biogeochemical properties from snow, ice, and seawater. With the Polarstern as our base, we built onto the time series capturing the variability of the Arctic system. The dynamic nature of the Arctic and how fast the world around you can transform was something that really struck me. There were new cracks opening and closing throughout the floe, as well as melt ponds and streams forming and draining which we would have to jump over or wade through on the way to collect the samples. These events would be accompanied with a cascade of processes and pulses of life within the associated ecosystem. We were only able to capture these through intensive sampling bouts, working on the ice for 24 hours straight, powered by copious amounts of coffee and gummy bears.

You had to be constantly vigilant, since below us was thousands of meters of seawater, and a polar bear could emerge from the sea ice rubble any time! We were lucky during our time on the floe in that we experienced long periods of calm weather with perpetual bright sunshine. Occasionally there were some very foggy days where it was too unsafe to work on the ice due to poor visibility hindering polar bear guarding.

Team ECO during Leg 4 of MOSAiC. Left to right: Celia Gelfman, Allison Fong, Jessie Gardner, Giulia Castellani, Oliver Müller, John Paul Balmonte and Katyanne Shoemaker. Photo: Lianna Nixon.

Breaking boundaries: working together for a common goal

The name MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) reflects the complexity and diversity of the science during the expedition. The MOSAiC field campaign provided an unparalleled opportunity to simultaneously observe and measure the temporal evolution of a number of co-varying Arctic climate system variables from the central Arctic atmosphere, ocean, and ice. With this mindset I was amazed how much more we were able to achieve by working together. For example, it would have been impossible to have collected the number of samples for the HAVOC project that we managed, without others volunteering their precious free time to help. Working across these disciplines and breaking down the boundaries between traditional subjects will give new perspectives on the central Arctic, and it is here that ground-breaking discoveries could be made.

Participants from 70 institutions in 20 different countries took part in the field campaign where everyone worked towards a common goal. Photo: Jessie Gardner.

The expedition has ended, but the research is only just beginning

While the field campaign has ended, MOSAiC is by no means over. Samples are now being shipped to various institutions around the world to be analysed. These, alongside the suite of measurements taken by other teams will likely take the scientific community over a decade to analyse the data collected on MOSAiC. Through virtual meetings we have kept the cross-cutting discussions alive and we already have ideas of combining data and theories in unique and exciting ways. These data and observations will be fundamental to improve our understanding of climate change, and help inform pressing political decisions on climate protection.

On its return in October 2020 the Polarstern offloaded thousands of samples which are being shipped around the world for further analysis. Photo: Jessie Gardner.

 

Opplevelsesdesign: Samskaping mellom masterstudenter ved Handelshøgskolen og Clarion Hotel The Edge

Skrevet av førsteamanuensis May Kristin Vespestad, Experiential Marketing, Management and Innovation (EMMI).

Masterstudentene i emnet Service- og Opplevelsesdesign ved Handelshøgskolen jobbet tett opp mot Clarion Hotel The Edge i Tromsø. Illustrasjonsfoto: Marius Fiskum / UiT

Vårhalvåret 2021 har masterstudentene i emnet Service- og Opplevelsesdesign ved Handelshøgskolen jobbet tett opp mot Clarion Hotel The Edge i Tromsø. De har jobbet med problemstillinger knyttet til hotellets arbeid med opplevelsesdesign. Hotellsjef Ida Kristine Jakobsen er også næringslivsmentor ved Handelshøgskolen og har vært sterkt involvert i studentenes arbeid. Studentene har jobbet frem innovative og spennende forslag som kan tydeliggjøre The Edge som en sterk aktør i opplevelsesøkonomien.

I starten av semesteret laget jeg som fagansvarlig i samarbeid med hotelldirektøren på The Edge en semesteroppgave der studentene skulle evaluere eksisterende pakker som hotellet tilbyr i dag. Disse pakkene har i stor grad oppstått som en respons på Covid-19 og behovet for endring med tanke på kundegruppene. Studentene skulle også jobbe frem nye og teoretisk funderte forbedringsforslag til hvordan hotellet kunne implementere service- og opplevelsesdesign i praksis. Det var mange gode forslag til hvordan fokus på hvordan læring og underholdning kan bidra til gode opplevelser. Det å involvere kunden gjennom hele opplevelsen og legge til rette for samskaping ble også vektlagt for å skape økt verdi for både kunde og bedrift. Arbeidet munnet ut i både en muntlig presentasjon og en skriftlig innlevering.

Hotellsjef ved the Edge, Ida Kristine Jakobsen, er også næringslivsmentor ved Handelshøgskolen og har vært sterkt involvert i studentenes arbeid. Foto: Sander Torneus/ Clarion Hotel The Edge.

Jeg (Vespestad) er veldig fornøyd med jobben studentene har gjort. Å koble teori og praksis på denne måten har blitt svært godt mottatt. En slik samskaping mellom Handelshøgskolens studenter, fagfolk og næringsliv gir verdi både for studenter og bedriften. Jeg berømmer studentene og Ida Kristine Jakobsen for deres engasjement. Som leder av Forskningsgruppen Experiential Marketing, Management and Innovation (EMMI) syns jeg også dette er en flott måte å knytte sammen forskning og undervisning på, som samtidig viser næringslivsrelevans.

En slik samskaping mellom Handelshøgskolens studenter, fagfolk og næringsliv gir verdi både for studenter og bedriften.