BREATHE skal finne ut hvordan det vil gå med havisalgene i fremtiden

Et nytt prosjekt, BREATHE, skal forske på havisalger i Arktis. Havisalgene er viktige i det marine miljøet. Men vi vet for lite om hvordan de lever i isen og hvordan de påvirkes av klimaendringene. Da er det vanskelig å spå hva som vil skje med dem og de som er avhengige av dem. BREATHE vil forske sånn at vi får bedre modeller for hva som vil skje med havisalgene i fremtiden.

Havisalger lever i isen i de polare områdene. Foto: Karley Campbell

Havisalger er alger som lever i isen rundt polene. De er en viktig del av næringskjeden fordi de er mange og fordi de har fotosyntese. Fotosyntese får dem til å fange CO2 og bruke den til å lage oksygen og mat til andre, det kalles primærproduksjon. Havisalger slipper også ut CO2 og bruker O2 gjennom det som heter respirasjon. Reparasjonsprosessen i algene vet vi ikke noe om enda. Primærproduksjonen og respirasjon går opp eller ned med variasjoner i lys og næring. Det betyr at gassene og maten som algene gir til miljøet endrer områdene der de lever. BREATHE-prosjektet vil finne ut hvordan. Endringene i hva algene gjør og tilgang til næring er ikke godt representert i modeller som kan brukes til å forutsi fremtiden for havisalger. BREATHE vil lage bedre modeller for å forutsi hva som skjer med havisen. De bedre modellene vil ta med algenes tilgang til næring og respirasjonsprosessen. I fremtiden kan vi bedre vite hva som skjer med havisenes alger, gassene de produserer og helsen til polare marine miljøer når det er endringer i klima og miljø.

En havisalge. Foto: Karley Campbell

Prosjektet har fått 8 millioner kroner fra Forskningsrådet og vil pågå frem til 2025. Partnerne i prosjektet er UiT, Polarinstituttet, universitetet i Aarhus, GINR på Grønland, universitetet i Manitoba og universitetet i Calgary.

FISHCOMM skal finne ut om friske celler kan hjelpe skadde celler i fisk

Et nytt forskningsprosjekt skal finne nye reparasjonssystemer i fisken.

Hvert år dør ca. 20% av oppdrettsfisk av skader fra sykdommer eller av fysiske skader. Når vevet til fisken er skadet settes fiskens reparasjonssystemer i gang for å få det til å gro. Noe ødelagt vev blir fikset og noe dør. Forskerne i FISHCOMM skal finne ut om friske celler bidrar til å hjelpe syke og skadde celler. De tror at friske celler kan overføre bittesmå organeller og mitokondrier til de skadde. Mitokondrier er livsviktige energifabrikker i cellene. De gjør at cellene kan omdanne energi og leve. Forskerne skal finne ut hva som setter i gang at de friske cellene gir mitokondrier til de skadde og hvordan de gjør det. De tror at infeksjoner og nanoplast er noe av det som kan stresse cellene så de blir dysfunksjonelle. De tror også at da hjelper friske celler med nødhjelp, som å sende over mitokondrier.

To hudceller fra laks. Mitokondrier i den ene cellen er farget med lilla fargestoff, mens de i den andre er farget med turkis fargestoff. Forskerne i FISHCOMM har funnet celler med begge mitokondriefarger i en celle, noe som tyder på overføring av mitokondrier fra den ene cella til den andre. Foto: Svartaas, Kjølstad, Wolfson, Dalmo.

Kunnskapen fra prosjektet vil øke forståelsen av mekanismene som er med å reparere syke celler. Økt kunnskap vil også øke velferden for dyrene i havbruket på sikt.

Prosjektet har fått 12 millioner av Forskningsrådet og skal pågå ut 2024. Partnere i prosjektet er UiT, Shanxi Universitet og Westminster Universitet.

Different paths to immune protection in humans and fish

Written by Agata Teresa Wyrozemska, doctoral research fellow at Fish Immunology and Vaccinology.

The interaction between bacteria, viruses and the organisms they try to infect is a never-ending race. The human body can defend itself against most unwanted pathogens (harmful bacteria and viruses), using the resources of innate and adaptive immunity. Innate immunity is the first line of defence and includes physical barriers, such as the skin and mucosal membranes lining the digestive tract, respiratory tract, etc. Natural reflexes like sneezing, coughing, and vomiting support the clearing of pathogens. The complement proteins and acute-phase proteins are also involved. In addition, some cells send signals in form of, for example cytokines, which trigger the innate and adaptive immune processes. The adaptive immune response develops through direct contact with pathogens; its mechanisms are triggered after the innate immunity and take time to develop. Adaptive immunity involves various specialized cells and molecules, including Major Histocompatibility complexes (MCH). There are different types of MHC molecules but their general function is to help the immune system recognize foreign substances and distinguish them from the self.

Do fish have the same capacity to combat infection as humans?

Anglerfish female with attached male. Copyright © 2020 Swann et. al.

Fish are the most numerous and diverse group of vertebrates, with nearly 21,000 species, more than all other types of vertebrates combined. Would it be logical, if such a large and diverse group followed only one immune defence strategy? Probably no, as in many other aspects of biology, this one too does not follow a simple scheme. Let us focus on bony fish, which anglers and fish-enthusiasts shall be well acquainted with, like cod and salmon. To spice things up, we will throw anglerfish into the mix. Anglerfish males, as a part of reproductive strategy, bite into the female and fuse with her. They form an intricate type of transplant. What is even more interesting, many males can fuse with one female. These seams counterintuitive, because in human transplants, the tissue of the donor must be compatible with the tissue of the recipient or the immune system will reject it. Imagine having multiple organs transplanted from random people. How is it possible that the fused male body is not rejected? This is dictated by a loss of key capabilities that characterize classical adaptive immunity in jawed vertebrates in the Anglerfish (Swann et al., 2020).In a nutshell, their ability to recognizing self from non-self is impaired. On the other hand, there is cod, which has lost one type of the MHC molecules in course of evolution. One may speculate that this loss has been compensated by a massive expansion of the other type of MCH molecules. (Star et al., 2011)

The challenges of fish vaccines

Atlantic salmon. “File:Salmo salar-Atlantic Salmon-Atlanterhavsparken Norway.JPG” by Hans-Petter Fjeld is licensed under CC BY-SA 2.5

Anglerfish is a curiosity, and while cod is more commonly known, it is  salmon that is the most popular in Norway. It is well-liked and often lands on our plates. Because of the high demand for salmon fillets, the fish has to be farmed. Thousands of fish are kept in large nets in sheltered waters such as fjords or bays. In dense populations, diseases spread fast. As we see with the Covid-19 outbreak, the major measure to prevent the spread of the virus is social distancing. Social distancing in fish farms is not possible. The most common measure to prevent  diseases among farmed fish, which drive economic losses, is vaccination. Pathogens causing diseases in salmon have been thoroughly examined. Numerous vaccines are available, but there is still room for improvement. It is important to thoroughly examine and understand the salmonid immune systems to create more effective vaccines. Salmon shares many immune features with humans. For instance presence of specific cells, like white blood cells, and immunity-related internal organs. However, there are some differences in their structures and functions as well. Salmon, like other bony fishes, does not have bone marrow. Fish also rely more on the innate immunity. The adaptive response appears later in course of infection and is less sophisticated than in humans. These differences are interesting and important. We at the Fish Immunology and Vaccinology group have a focus on exploring salmon’s immune system and contribute to expand the general knowledge and the formulation of new vaccines. More information about the group can be found here.

Article “The genome sequence of Atlantic cod reveals a unique immune system” by Star et. al. 2011. 

Article “The immunogenetics of sexual parasitism” by Swann et. al. 2020.

Å vende masterstudenter mot hverandre – for alles beste?

Skrevet av førsteamanuensis Arve Lynghammar, Forskningsgruppe for genetikk, NFH.

Tid er et knapphetsgode ved de fleste universiteter, inkludert UiT. Adjektivet fremragende skal helst følge alle ansatte og studerende til enhver tid som en skygge, men man kommer ikke unna at det tidvis må prioriteres knallhardt.

Masterstudenter er som stamceller, de må prioriteres og dyrkes. Med mer eller mindre veiledning kan disse i prinsippet bli til hva som helst. Noen er totipotente og vil gjerne bli til alt, mens andre er unipotente og har en klar faglig retning. Hvor mye av dette som skyldes arv eller miljø varierer fra kandidat til kandidat, men i alle tilfeller kreves noen dytt i konstruktiv retning. Man skulle kanskje tro at forskningsgruppe for genetikk kunne gjøre noe med den arvelige delen, men vi må som alle andre konsentrere oss om miljø-delen.

Mentorordning

Kan man utdanne masterkandidater på en bedre måte uten å prioritere ned andre viktige oppgaver? Det tror vi er mulig, og vi mener man får andre positive effekter med på kjøpet. Under julehandelen i 2020 startet forskningsgruppe for genetikk en mentorordning for sine masterstudenter. Prinsippet er at nye masterstudenter får tildelt en personlig mentor. Mentoren er fortrinnsvis godt i gang med sin masteroppgave, og kjenner dermed til universitetssystemet og de vitenskapelig ansattes luner og lyter.

Som studenter flest kommer våre kandidater fra svært ulike populasjoner med ulike styrker og svakheter. Et godt eksempel er skrivehjelp; her kan studentene med engelskspråklig bakgrunn hjelpe studentene fra Skjervøy med smidige formuleringer og rydde opp i gale synonymer. I motsatt retning vil nok en som har vokst opp på Skjervøy ha bedre forutsetninger for å skaffe biologiske prøver fra et oppdrettsanlegg enn en fra Miami.

Umiddelbart etter oppstarten kom det inn et initiativ fra studentene selv, om å lage et regneark der man identifiserer sine styrker og svakheter. Dermed har gruppa en «kompetansebank» under stadig utvikling. Hvorfor bruke lang tid på selvlæring av GGplot i R dersom man bare kan spørre en medstudent?

Hovedfokuset er på det vitenskapelige, men det oppfordres også til fritidsaktiviteter innenfor gjeldende smitterammer. I en pandemisk tid med mye hjemmeundervisning kan dette utgjøre en stor forskjell for den enkelte og kanskje spesielt for studenter fra andre kanter av verden. Ordningen fungerer bra for noen så langt, og for andre betyr det mindre. Det viktige er midlertid at forskningsgruppa legger til rette for et godt og interagerende (ikke utagerende!) miljø. Selv om det kreves en del innsats fra de vitenskapelig ansatte for å få det hele til å rulle, har vi tro på at det vil bli selvgående på sikt.

Positive bi-effekter

Fra de vitenskapelig ansattes side handler det ikke bare om å frigjøre tiden man vanligvis bruker på å forklare hvordan man refererer til en bok, eller andre enklere utfordringer som den nevnte engelske grammatikken. Vi vil helst bruke tiden til å løfte studentene fra «ok» til et «fremragende nivå», og ikke bare fra «tilfredsstillende» til «ok».

Ved å gi studentene ansvar for en annen person gjør at mange vokser på det personlige plan, og ikke minst bidrar det til en sterkere følelse av tilhørighet i gruppa. Naturlig nok er det høy gjennomtrekk av masterstudenter, og ett eller to år er i knappeste laget for å føle seg som en del av laget. Det er lite kontroversielt å hevde at følelsen av tilhørighet øker trivselen. Økt trivsel fører som regel til høyere tillit mellom gruppas medlemmer, og dermed bedre læringsmiljø. I tillegg lærer man bedre av sine medstudenter (peer teaching), og de fleste vet at dersom man skal forklare noe til andre vil det kreve en høyere forståelse av emnet.

Mentorordningen skal evalueres neste gang julen ringes inn, og vi håper å kunne rapportere om mange fremragende prestasjoner.

Et lite utvalg av medlemmer i forskningsgruppe for genetikk under fjorårets sosiale arrangement. Legg merke til at også torsken (Gadus morhua) holder en meters avstand. Foto: Kim Præbel

 

Å kjenne lusa på gangen

– etablering av Senter for systembiologisk luseforskning (SSL)

Skrevet av førsteamanuensis Arve Lynghammar, seniorforsker Roy Dalmo og professor Kim Præbel ved Forskningsgruppe for genetikk, Norges fiskerihøgskole.

En av de største og dyreste problemene i norsk fiskeoppdrett er noen små, skallkledte dyr som går under samlebetegnelsen «lus». Den mest kjente er lakselus, men også søskenbarnet skottelus skaper problemer. Begge artene er hoppekrepser og har et reproduksjonstall (R-tall) mye høyere enn de mest pessimistiske anslagene Verdens helseorganisasjon (WHO) har hatt for korona. Hvert år bruker oppdrettsindustrien mer enn 5 milliarder kroner på å bekjempe problemet. Prisen per lus er jo ikke så stor, men samlet er dette en betydelig utgiftspost for næringen. Da er ikke problemene med dyrevelferd eller konsekvensene for villfisk og samfunn tatt med i regnestykket.

Lakselus Lepeophteirus salmonis (venstre) og skottelus Caligus elongatus (høyre), to arter hoppekreps som fører til store utfordringer for oppdrettsindustrien. Foto: Julie Bitz-Thorsen.

Kamper kjempes hver eneste dag

Til nå har strategien i hovedsak vært å fjerne symptomene, altså å fjerne lusa fra laksen. Men siden oppdrettslaksen og dermed lusa svømmer rundt i anlegg med bare et nett som barriere, vil lusa kunne spre seg fritt mellom miljø og merd. Kjemisk behandling brukes som enten badebehandling eller tilsatt i fôret. Begge deler påvirker miljøet rundt merdene. Det er ille nok, men kanskje enda verre; lusene tilpasser seg kjemikaliene og blir resistente (motstandsdyktige). Fysisk avlusning som høytrykksspyling, varmt vann eller ferskvann påvirker miljøet rundt i mindre grad. Men med fysisk avlusning øker utfordringene med fiskevelferden. Også dette har lusa et svar på. Den kan sette seg dypere ned mellom skjellene på laksen og blir vanskeligere å skylle bort. I tillegg kan den ganske raskt endre hvilke temperaturer og saltkonsentrasjoner den tåler.

Rensefisk (som leppefisk og rognkjeks) har lenge blitt sett på som den perfekte løsningen. Men rensefisken får selv velferdsutfordringer og kan skape trøbbel hvis den rømmer. I tillegg kan lusa gjøre seg mer gjennomsiktig som gjør at rensefisken ikke ser den. Gjennomsiktige lus kan muligens også gjøre seg usynlige for «Stingray-systemet» – en Star Wars-lignende sak som bruker laserstråler til å skyte lus. Lusa har altså en usedvanlig god evne til å unngå industriens forsøk på å få ned R-tallet. 

Oppdrettsanlegg i Nord-Norge, sommeren 2020. Om dette anlegget er plaget med lus vites ikke, men sannsynligheten for det er stor. Foto: Arve Lynghammar.

Noe må gjøres

Etter mange år og milliarder av kroner er de foreløpige konklusjonene lite lustig  lesning. Kanskje er behandling av symptomer, altså å fjerne lusa etter at den har slått seg ned på en uheldig laks, ikke er den beste løsningen. Det er nok på høy tid å mobilisere flere miljøer ved UiT, med mål om en mer helhetlig forståelse av luseproblemet. Med andre ord, vi må lære å kjenne lusa bedre på gangen.

Tålmodig laks i vente-merd ved slakteri i Nord-Norge. Foto: Kim Præbel

For å svare på utfordringene ønsker vi å etablere Senter for systembiologisk luseforskning (SSL) sammen med et bredt og relevant fagmiljø. Fra Norges fiskerihøgskole deltar forskningsgruppene Genetikk, Havbruk og miljø, Fiskeimmunologi og vaksineutvikling, MarBio, Sjømatvitenskap og Mikroalger. Fra Institutt for arktisk og marin biologi bidrar forskningsgruppene Ferskvannsøkologi og Nordlige populasjoner og økosystemer (og det er plass til flere). Havbruksstasjonen i Tromsø med sin luseinfeksjonsmodell er også sentral.

Senteret har tre hovedmål:

1. Hvilke lus er hvor?

I dag regnes lus som én genetisk enhet i Norge og Atlanterhavet som helhet. Det betyr at de blir forvaltet og behandlet som om de er like. Men erfaringene fra dagens avlusningsmetoder viser at lusene er svært gode på å tilpasse seg, og bare dette tyder på at grupper av lus kan utvikle seg ulikt. Nylig har man funnet ut at det til og med er klare forskjeller i genene hos lusene mellom merder på samme sted! Kunnskap om lusas genetiske sammensetning og evne til å være resistent mot en avlusningsmetode, vil gjøre det mulig å ha mer effektiv og målrettet behandling. Ett av målene for senteret er altså å kartlegge hva slags genetisk sammensetning lusepopulasjonene har, og hvor de ulike er langs kysten. Vi vil se på hvordan samspillet mellom lus på et sted foregår, i løpet av en produksjonssyklus. Hvordan akkumulerer lusa gener som gjør dem resistente mot behandling i tid og rom ?

2. Hvor kommer lusa fra?

Som sagt er oppdrettsfisk i hovedsak bare skilt fra resten av naturen med et nett. Lus forekommer også på villfisk, men det er lite kjent hvordan lusa beveger seg frem og tilbake mellom over nettet. Er det villfisk som smitter oppdrettsfisk mest eller er det omvendt? Og hvordan vil de resistente lusevariantene påvirke villfisk?

Bruk av rensefisk vil nok fortsette i årene fremover, og man avler frem varianter som er flinkere til å beite på lus. Lusa på sin side tilpasser seg rensefiskens økende evne til beiting, i et stadig pågående våpenkappløp. Hva vil skje dersom de fremavlede rensefiskene rømmer og sprer seg blant villfisk?

Ved å bruke metoder der vi ser på hele arvematerialet, vil vi prøve å få et innblikk i om rømt rensefisk blander seg med villfisk på stedet og hvordan resistente lus oppfører seg på villfisk. Vi tror at interaksjonen mellom vert og parasitt vil endres både i vill- og oppdrettsfisk.

Rognkjeks (Cyclopterus lumpus) blir brukt som rensefisk mot lus i nordnorsk lakseoppdrett. Foto: Kim Præbel.

3. Hvordan forhindre lusepåslag?

I innledningen slo vi fast at dagens avlusningsmetoder har utfordringer i tillegg til utvikling av resistens hos lusa. Derfor ønsker vi også å finne ut om det er måter å forhindre at lusa i det hele tatt slår seg ned på oppdrettsfisken. Bruk av algefôr produsert ved Finnfjord smelteverk har vist seg å være lovende. Vi ønsker i tillegg å teste tusenvis av ekstrakter fra Marbio for å se om disse kan holde lusa utenfor det gode selskap. Til sist vil vi med en bred genetisk tilnærming finne ut om ulike lusepopulasjoner kan være sykdomsbærere, i tillegg til de fysiske hudskadene som de forårsaker.

Nordnorsk oppdrettsanlegg for laks. Foto: Kim Præbel.

Stor slagkraft og relevans

Senter for systembiologisk luseforskning bidrar direkte til å støtte opp om UiTs satsing på bærekraftig havbruk og forskningsdrevet innovasjon. Vi tror at deltakerlisten blir utvidet med andre miljøer fra UiT, inkludert Det juridiske fakultet og Handelshøgskolen ved UiT. Oppdrettsnæringen og forvaltningsinstanser vil sannsynlig også bidra til en varig løsning for senteret. Vi ønsker å bruke vår store internasjonale kontaktflate til å fortsette arbeidet som det nå nedlagte «Sea Lice Research Centre» i Bergen gjorde, men med et fokus dreid mot interaksjonen mellom vert (laks) og parasitt (lus).

Næringen etterspør mer kunnskap om problematikken, for lus er rett og slett årsaken til at produksjonen ikke kan øke i årene fremover. Å bruke noen millioner på dette senteret fremstår som lusne penger sammenlignet med å kaste 5 milliarder ut vinduet hvert år.

 

Student Daniel finner molekyler i havdyr som kan bli nye medisiner

Skrevet av forsker Kine Østnes Hansen ved Marbio, Norges fiskerihøgskole.

I forskningsgruppa Marbio leter vi etter nye molekyler som kan utvikles til medisiner. Vi leter i planter, dyr og mikrober som lever i havet, fra kysten vår og opp til Nordpolen. Molekylene vi finner kan for eksempel brukes mot kreft og bakterier. Masterstudent i bioteknologi, Daniel Simonsen, er 24 år og kommer fra Vadsø. Han begynte i høst og skal være en del av vår forskningsgruppe i 10 måneder. Hos oss skal han finne og isolere molekyler fra et marint mosdyr, finne ut hvordan molekylene er bygd opp og teste hva de kan brukes til. Prøven Daniel skal jobbe med ble samlet inn fra havbunnen i Hinlopenstredet, som ligger mellom Spitsbergen og Nordaustlandet, i 2019.

I denne trålhaugen ligger flere kolonier av mosdyret som Daniel jobber med. Etter at (f.v.) Eivor, Renate, Gunilla og Gregg var ferdig med sorteringen, ble prøven sendt til Marbio for videre analyse.  Foto: Espen H. Hansen.

Vi mennesker har alltid brukt naturprodukter for å få bedre helse. Tannanalyser av neandertalerne viser at de tygde på bark, som vi nå vet inneholder salisylsyre. En variant av salisylsyre brukes fremdeles som smertestillende i medisinen Aspirin. Andre kjente eksempler på medisiner fra naturen er morfin og antibiotika. Faktisk har over 50% av alle medisiner opphav fra naturen. Felles for de fleste er at de kommer fra dyr, planter og bakterier som lever på land. Dette  er fordi livet på land  er mer tilgjengelig for oss mennesker sammenliknet de som lever i havet. Planter, dyr og mikrober som lever i havet har samme rike innhold av molekyler som livet på landjorda. Ny teknologi har gjort det mulig å samle inn flere marine arter, og vi begynner å få medisiner med opphav fra havet. Men havet er stort, og bare en brøkdel av livsformene som lever her har blitt undersøkt for innhold av molekyler som kan videreutvikles til medisiner. Havområder i Arktis, der vi i Marbio samler inn prøver, er lite undersøkt. Siden det er så stor del av dagens medisiner som stammer fra naturen er det ikke vanskelig å forstå hvorfor vi er motiverte til å lete etter nye medisiner der ingen har lett før.

Forskningsgruppen Marbio har i dag 15 ansatte og 3 masterstudenter. Professor Jeanette H. Andersen (fremst t.h.) er gruppeleder. De ansatte har bakgrunn fra bioteknologi, biokjemi, mykologi, farmasi, virologi og molekylærbiologi. Vi har arbeidssted i Siva innovasjonssenter Tromsø. Vi har en variert arbeidsdag og mange spennende prosjekter på gang. Marbio er en flott plass å jobbe!

Det er flere grunner til at Daniel skal lete i mosdyr etter molekyler som kan videreutvikles til medisiner. Mosdyr er invertebrater (virvelløse dyr). Det betyr blant annet at de ikke har like bra immunsystem som oss mennesker. De fleste mosdyrene sitter fast på en plass på havbunnen, hvor de får næring ved å filtrere sjøvann. Det gjør at de er sårbare for angrep fra rovdyr og bakterier, eller kan bli overgrodd av andre arter. For å overleve produserer flere av invertebratene molekyler som er giftige for artene som truer dem, som en måte å beskytte seg. Molekylene er blitt bedre og bedre gjennom evolusjon: dyrene som lagde molekyler som ga best beskyttelse, overlevde. Det er denne molekyltypen Daniel ønsker å finne. Marbio har lang erfaring med å analysere biomasse fra invertebrater. Tidligere har vi blant annet funnet molekyler som fungerer mot brystkreftceller i et nesledyr (Thuiaria breitfussi) fra havet utenfor Bjørnøya (1). Flere masterstudenter har også gjort liknende arbeid som det Daniel gjør nå (2). Vi leter også etter aktive molekyler fra marine bakterier og sopp.

Marbio deler kontorlandskap med Marbank, den nasjonale marine biobanken. Her studerer Daniel det rike utvalget av prøver vi har tilgang til.

Daniel startet arbeidet med kjemisk analyse av et ekstrakt fra mosdyr. I ekstraktet fant han det vi tror er et kjent molekyl og fire som vi tror er nye. Etter å ha funnet disse begynte den tidskrevende oppgaven med å isolere forbindelsene. For å gjøre dette brukte Daniel avansert kjemisk utstyr som kan trekke ut enkeltmolekyler fra ekstraktet. I metoden, der vi bruker noe som heter en HPLC-kolonne, sorteres molekylene etter hvor fettløselige og vannløselige de er. Det gjør at vi får rene forbindelser som vi kan analysere videre.   Etter flere måneder på kjemilaben er flere av prøvene til Daniel isolerte og klare til at vi skal finne ut hvordan de er satt sammen.

Daniel jobber med kjemisk isolering av fire antatt nye og et kjent molekyl fra mosdyrekstraktet.

Daniel skal finne ut hvordan molekylene er bygget opp med en kjemisk teknikk som heter NMR spektroskopi. Det skal han gjøre sammen med forskeren Johan Isaksson ved institutt for kjemi, UiT.

Utvalgte NMR spekter fra den tidligere kjente forbindelsen i Daniel sin mosdyrprøve. Spektrene forteller oss egenskapene til proton og karbonatomene i prøven, og hvordan disse atomtypene er plassert i forhold til hverandre.

Nå på våren skal Daniel teste om molekylene han  har funnet kan brukes mot blant annet kreftceller, bakterier, sopp og mot bakteriell biofilm. Kort forklart testes stoffene i ulike konsentrasjoner mot de forskjellige målene. Både for å se om de er «aktive» (om de fungerer) og for å finne ut hvor kraftig aktiviteten er. Medisiner må virke kun på det de skal treffe i kroppen vår. Dette er for at medisinen skal virke godt nok og ikke gi for mange bivirkninger. Det beste i en slik første testrunde er at stoffene viser aktivitet i en av testene. Hvis et stoff for eksempel viser aktivitet mot en kreftcelletype betyr det at stoffet kan videreutvikles til en målrettet kreftmedisin. Det betyr en medisin som bare virker på syke celler og ikke ødelegger friske celler i kroppen. Tidligere har Marbio funnet molekyler som virker bare mot brystkreftceller (1). Når vi testet disse stoffene så vi at brystkreftcellene døde, mens andre celletyper ikke ble påvirket. Vi jobber nå med å forstå hvilke prosesser inne kreftcellene molekylet «angriper». I tillegg jobber vi i Marbio med flere stoffer vi har oppdaget. Blant annet jobber vi med stoffer mot blodkreftceller og som forhindrer at insulinproduserende celler hos pasienter med diabetes type I dør.

Dette er de første resultatene som viste oss at vi hadde funnet marine molekyler som virket mot brystkreftceller. I de lilla brønnene er det levende celler, i de gule brønnene er cellene døde. Et av molekylene er her testet i en konsentrasjonsserie mot brystkreftceller, hudkreftceller og normale lungeceller. Vi så en målrettet effekt mot brystkreftcellene og at stoffet var aktivt ved lave konsentrasjoner. Hudkreftcellene og lungecellene ble ikke påvirket av stoffet.

Hva vi skal gjøre videre med molekylene Daniel har funnet vil de første testrundene vise oss. Hvis stoffene er aktive mot kreftceller kan vi gjøre oppfølgingsstudier for å få en forståelse av hvordan kreftcellene dør. Dette kan inkludere ulike stadier av cellesyklusen, om molekylene påvirker signalene imellom cellene eller om cellene dreper seg selv (dette kalles apoptose). Daniel sin masteroppgave vil være tilgjengelig i Munin i slutten av mai 2021.

(1) Molekyl fra havet dreper brystkreftceller.

Kjerringa mot strømmen; historien om mRNA baserte Covid-19 vaksiner og hvordan en ungarsk kvinnelig biokjemiker nektet å gi opp

Skrevet av professor Jorunn Jørgensen, Norges fiskerihøgskole.

Karikó sitt pionerarbeid har lagt grunnlaget for to av de ledende Covid-19 vaksinene verden har tatt i bruk. Foto: BOHEMAMA/mostphotos.com

Før korona var det få som visste hvem Katalin Karikó var. Nå er hun en het kandidat til årets nobelpris i kjemi for sin forskning på mRNA. Karikó sitt pionerarbeid har lagt grunnlaget for to av de ledende Covid-19 vaksinene verden har tatt i bruk. Arbeidet startet ved Universitet Szegved i Ungarn tidlig på 80- tallet. Her lot den unge Karikó seg fascinere av mRNA, budbringeren, som instruerer cellene om hvilke proteiner de skal lage. Hun så muligheter i mRNA; kunne dette være oppskriften på hvordan kroppen vår kunne bli sin egen medisin-fabrikk, for eksempel mot virus?  Dr. Katlin Karikó, som nå er 66 år, har opplevd mange skuffelser, avslag og steile motbakker. Men i dag kan hun rangeres som en av verdens mest betydningsfulle forskere.  

I Norge er Covid-19 vaksineringen i full gang. De første vaksinene som kom til landet i januar var fra selskapene Pfizer/BioNtech og Moderna. Begge disse er syntetiske mRNA-vaksiner, en helt ny vaksineteknologi, som ikke har vært i bruk før. Mange har latt seg imponere over hvordan man på rekordtid har klart å utvikle helt nye vaksinekonsepter og produsere millionvis av doser.  Det å få dette til så raskt har ikke vært mulig uten mange, mange tiår med grunnforskning. En av pionerne var Katlin Karikó.

Karikó, datter av en slakter, utdannet seg til biokjemiker på 80-tallet ved Universitetet Szeged i Ungarn. Det var også her hun startet sin forskning på mRNA.  Hun ble tidlig overbevist om at mRNA (mRNA forteller cellene i kroppen hvordan de skal lage proteiner) også kunne brukes til å kurere sykdom. Det biologiske forskningssenteret i Szeged hadde knappe ressurser og manglet teknologien Karikó trengte for å få framgang i forskningen sin. Hun bestemte seg derfor for å forlate heimlandet sitt og fikk i 1985 jobb ved Temple University i Philadelphia. Historien forteller at hun solgte sin brukte Lada, vekslet pengene inn i 1200 dollar på svartebørsen og sydde de inn i teddybjørnen til sin 2-årige datter. Slik fikk hun pengene med seg på flyet til USA.

Katlin Karikó. Foto: Krdobyns/wikipedia.org

Den amerikanske drømmen ble ikke lett for Karikó

I den tidlige fasen av RNA-forskningen fantes metoder for å isolere mRNA fra celler, men man kunne ikke lage store mengder i laboratoriet. På 90-tallet kom metoden for å få dette til; enzymet RNA-polymerase gjorde det mulig å lage mRNA fra DNA ved PCR-metoden. Karikó fikk ta del i denne RNA-boomen, men hennes ide om å bruke mRNA som medisin fikk tilbakeslag. Når forskerne injiserte mRNA i mus fikk musene så sterke immunreaksjoner at de døde. Karikó var da ansatt ved University of Pennsylvania (Upenn) og hadde en opprykkstilling for et professorat der. Hun mente at det burde finnes løsninger på problemet med immunreaksjonene til musene. Men hennes søknader om penger til RNA-forskning fikk avslag på avslag og feltet var lagt dødt. I 1995 fikk hun en klar beskjed fra Upenn; uten finansiering måtte forskningen hennes legges ned og hun ble degradert. Ikke nok med det, på samme tid ble hun diagnostisert med kreft.

Et tilfeldig møte ved en kopimaskin skulle forandre alt

Drew Weissmann, en anerkjent professor i immunologi, var nyansatt ved Upenn og traff Karikó ved kopimaskinen. De kom i prat og Karikó fortalte om forskningen sin og om musene som døde av betennelser, slik at finansieringen til hennes forskning var stanset. Drew selv jobbet med en vaksine mot HIV og inviterte Karikó inn i laben sin. Partnerskapet mellom disse forskerne gjorde at de stilte spørsmålet, hva er det i mRNAet som utløser den sterke immunresponsen? Løsningen fant de; De kunne erstatte en av byggesteinene i mRNAet med en endret utgave slik at musene kunne overleve. Studiet ble publisert i 2005 og oppfinnelsen ble patentert av Upenn. Veien lå nå åpen for en RNA-vaksine, men ingen var interesserte. Eller nesten ingen. Derrick Rosso, en post doc ved Stanford, leste artikkelen til Karikó og Weissmann og ble interessert. I 2010 grunnla han, sammen med en gruppe professorer fra Harvard, bioteknologifirmaet Moderna. Målet var å bruke modifisert RNA til å utvikle vaksiner og legemidler. I dag leverer Moderna Covid-19 vaksiner til hele verden og selskapets er verdsatt til 72 milliarder dollar. Et par år tidligere, i Mains i Tyskland, ble et annet selskap, BioNTech, stiftet. Grunnleggerne, tyrkiskfødte Ugur Sachin og hans kone Ozlem Tureci, hadde som mål å bruke mRNA innen kreftbehandling. Etter hvert så de at det også kunne brukes for å lage vaksiner mot pandemier. Så kom Covid-19 og ideen ble virkelig. I dag har Phizer/BioNtech 1800 ansatte og selskapet er verdsatt til 28 milliarder dollar.

Karikó, sto ved sin overbevisning

Karikó og Weissman utviklet en teknologi som gjorde vaksinene til Moderna og Pfizer/BioNtech unike: mRNAet ble pakket inn i en fettkapsel som gjorde at det ikke blir ødelagt ved injisering i kroppen. Upenn solgte patentet til Karikó og Weismann på et tidlig stadium. Karikó tjente bare et par millioner dollar for sitt patent, mens selskapene som produserer vaksinen tjener milliarder av dollar. Karikó søkte på nytt om opprykk til et professorat ved Upenn i 2013, men heller ikke denne gangen ble hun vurdert til å være kvalifisert. En som derimot så Karikó ´s kvaliteter var Ugur Sachin som ansatte henne som senior vice president i BioNTech i Tyskland. I intervjuer har Karikó uttalt at ordentlige vitenskapsfolk gir seg aldri. Vi er som rockemusikere, så lenge de kan spille er de lykkelige. Nobelpris komiteen har i alle fall en glimrende kvinnelig kandidat i år.

Foto: OLEKSANDR TODOROV/mostphotos.com

Vil du lese mer?:

How mRNA went from a scientific backwater to a pandemic crusher

Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA

Dette inneholder covid-19 vaksinen

Genbaserte vaksiner mot covid-19

 

 

Kan vi sette en pris på føling i fjæra?

Tekst av Margrethe Aanesen, Norges fiskerihøgskole, MarES – Changing use and values of marine ecosystem services in Arctic Norway

Mange land, deriblant Norge, har sluttet seg til ideen om “blå vekst”. Det betyr at mye av den økonomiske veksten i årene framover skal komme i marine og maritime næringer. I utgangspunktet er dette godt nytt for et institutt som er dedikert til marine næringer. Forskere ved Norges fiskerihøgskole jobber ikke bare med marin næringsutvikling, men også potensielle konsekvenser av vekst i de blå næringene. Det har vi gjort lenge før “blå vekst” strategien ble unnfanget.

I Nord-Norge har det kommet mange planer for økt næringsaktivitet i kystsonen. Kommunene Balsfjord, Karlsøy, Lyngen, Målselv og Tromsø har vedtatt en felles kystplan for Tromsøregionen.

Oppdrettsanlegg (foto: Andrey Armyagov)

Noen kaller planen en «oppdrettsplan» fordi den foreslår en betydelig økning i areal avsatt til oppdrett av laks i området. I tillegg til vekstplaner for oppdrett i kystsonen, så har det, i alle fall før korona, blitt etablert nye fisketurismeanlegg langs kysten i nord. Det skjer til tross for at mange norske fritidsfiskere stiller spørsmålstegn ved det de mener er sløsing med fisk i turistfiske. Og så har vi fjordene våre, hvor det i noen tilfeller åpnes opp for sjødeponi. Hva betyr så alt dette?

Næringsutvikling basert på bruk av naturressurser må ikke bare være økologisk bærekraftig, den må også være sosialt bærekraftig. Med sosial bærekraft mener vi at befolkningen som bor i områdene aksepterer utviklingen. Det betyr også at det er mer lønnsomt for samfunnet at næringsaktører får en eksklusiv tilgang til våre felles marine ressurser, enn at de er allment tilgjengelig.

(foto: Julide Ceren Ahi)

For det er ikke slik at dersom oppdrettsselskap, fisketuristanlegg eller gruveselskap ikke får bruke ressursene og tjenestene som havet gir, så er det ingen som bruker dem. De ressursene som «blå vekst» strategien gir næringsaktører tilgang til, har alle en såkalt alternativ-averdi. Det betyr den velferden eller nytten ressursene gir hvis de er allment tilgjengelige og ikke brukes til næringsvirksomhet. Problemet er at mens næringsaktører kan operere med priser på det de bruker ressursene til, så kan den allmenne bruken av de marine ressursene oftest ikke måles i penger. For hva er markedsprisen på grilling i fjæra, å hente seg koksei til et sommerkveldsmåltid, å kunne bade i sjøen, eller bare sitte og høre på den særegne stillheten i fjæra? Det er vanskelig for politikerne å ta gode beslutninger om hvordan samfunnet skal bruke våre felles marine ressurser, når noen ressurser kan måles i priser mens andre ikke kan det. Da er det lett for at de som kan måles i priser vinner. Er det i det hele tatt mulig å sette priser på «føling i fjæra»?

(foto: Katja Kircher, Mostphotos)

I MarES-prosjektet har vi undersøkt dette. Vi har utført valgeksperiment ut fra kystplanen for Tromsøregionen, planene for gjenåpning av gruvevirksomhet i Repparfjorden, og planer for vekst i turistfiske i kystsamfunn i Nord-Norge. Dagens planer for utvikling i disse næringene presenteres som ett alternativ. Og så lager vi andre alternativ der den planlagte næringsaktiviteten enten ikke finner sted, eller er redusert. – Om man velger alternativ med lav eller ingen næringsaktivitet, så må man være villig til å betale mer i skatt som kompensasjon for bortfall av inntektene og jobbene næringsaktiviteten ville gitt. I valgeksperimentet beskrives både fordelene med den planlagte næringsvirksomheten, som skatteinntekter og jobber, og ulempene, som fare for forurensing og ødeleggelse av marine økosystem. Den økte skatten som følger med de alternative planene, gjør at vi kan beregne priser på tjenester som kysten og de marine ressursene gir oss allmennbrukere.

Så hva er prisene folk setter på de «gratis» tjenestene vi nyter godt av langs kysten? Når det gjelder oppdrettsplanen, så beregnet vi hva det var verdt for folk som bor i de fem kommunene i og rundt Tromsø å få redusert antall nye lokaliteter. Det viktigste for dem var å få redusert potensiell forurensing av havbunnen. For det var hver person villig til å betale rundt 600 kroner mer i skatt per år. De var også villige til å betale for å redusere faren for at oppdrett påvirker kysttorsken negativt. Her var betalingsvilligheten 260 kroner per person per år. Noe overraskende var det at de som deltok i undersøkelsen bare var villige til å betale rundt 170 kroner per person per år for å redusere negative effekter på villaksen. På den andre siden var folk ikke villige til å betale noe for å redusere sjenerende utsikt eller støy fra oppdrettsanlegg. Det kan skyldes at de ikke synes det å se og høre oppdrettsanlegg er sjenerende.

(foto: Julide Ceren Ahi)

Når det gjelder fisketurisme, undersøkte vi først om folk var villige til å betale mer skatt for at myndighetene skulle jobbe mer for å øke kysttorskbestandene – noe de var. Hver person var i snitt villig til å betale over 900 kroner mer i skatt per år for det. Videre ba vifolk om å angi hvordan de ønsket å fordele ressursen kysttorsk mellom kystfiskere, fisketurister og private fritidsfiskere som dem selv. Her var det en helt entydig tilbakemelding om at folk ikke ønsket å regulere kystfiskerne strengere, mens de aksepterte at de selv som private fritidsfiskere ble strengere regulert, dersom også turistfiskere ble det. I de to nevnte undersøkelsene var resultatene relativt klare og entydige.

Det var de ikke i gruveundersøkelsen. Der spurte vi om folk var villige til å betale mer i skatt for å få redusert planene for ny gruvevirksomhet i Repparfjorden. Vi tok ikke opp diskusjonen for eller imot gruvevirksomheten. Også her var det forurensingen av havbunnen som var det viktigste for folk. Hver person var i snitt villig til å betale over 1000 kroner i skatt for at gruveselskapet skulle gjøre tiltak slik at havbunnen fortest mulig skulle bli rehabilitert. Folk var også villige til å betale 550 kr per person for å unngå negative effekter av gruvevirksomheten på villaksen i Repparfjordelva. De var derimot ikke villige til å betale noe for å få lokale arbeidsplasser i gruvevirksomheten.

Så hva sier disse resultatene oss? Resultatene er et første forsøk på å finne priser på goder som ikke omsettes i marked, og som derfor ikke har en markedspris. Likevel er de viktige for vår velferd. Problemet er at de ofte blir oversett av beslutningstakere fordi de ikke har priser. Da kan de ta beslutninger som er langt fra optimale for samfunnet, det vil si oss.

Forskningsprosjektet MarES – Changing use and values of marine ecosystem services in Arctic Norway har fått støtte fra Norges Forskningsråd i perioden 2017-2020 og avsluttes 31.12.2020. Prosjektet har vært ledet av professor Margrethe Aanesen ved Norges fiskerihøgskole, og i tillegg har professor Claire Armstrong, professor Vera Hausner og stipendiat Julide Ceren Ahi deltatt fra UiT. Nasjonale samarbeidspartnere er Akvaplan-niva, NMBU, Universitetet i Stavanger, og Menon. Prosjektet har hatt en internasjonal ekspertgruppe bestående av økonomer som jobber med naturressurser fra UK, Danmark og Canada, og en styringsgruppe med representanter fra Fiskeridirektoratet og Fylkesmannen i Troms sin miljøvernavdeling.

Kan vi utvikle norsk sjømatindustri uten plast?

Skrevet av Roger B. Larsen

Svaret på overskriften er NEI. Forskingsgruppen HARVEST ved Norges fiskerihøgskole skal de neste årene likevel lede et senter for forskningsdrevet innovasjon på tema bio-nedbrytbar plast til bruk i fiskeriene.

Torsk fanget med bio-nedbrytbart fiskegarn (Foto: J. Vollstad, SINTEF Ocean AS)

Hvor hadde verden vært i dag uten «vidundermaterialet» plast? Bare se rundt deg der du står eller sitter – det er plast overalt. Mennesker som ennå ikke har nådd pensjonsalder kan vel knapt forestille seg hvordan verden klarte å leve uten dette brukervennlige materialet.

Den industrielle måten å bruke petrokjemikalier på for å fremstille plast og syntetfibre, gjør nedbrytingstiden i det marine miljøet svært lang. Miljødirektoratet anslår at en brusflaske av plast vil ha en levetid på flere hundre år om den havner på havets bunn. Den brytes gradvis ned til mindre bestanddeler, og endeproduktet mikroplast blir værende i det marine miljøet langt inn i evigheten.

Dagens situasjon

Vi har ingen ambisjon om å rydde opp i gamle synder. Etter snart 70 år med fangstredskaper som i stor grad er laget av plastbaserte materialer, vil de negative effektene dukke opp på rekke og rad i årene framover. Perspektivet er uhyggelig med tanke på generasjonene som skal arve jorda etter oss.

Garn med nyfanget og gammel, død fisk. Dette garnet anslås tapt for ca. 35 år siden og det har fisket mer eller mindre kontinuerlig siden (Foto: Roger B. Larsen)

Så mye som 8-12 millioner tonn plast havner i havene årlig. De fleste tapte fiskeredskaper og deler av slike er praktisk umulig å få tak i. Fiskeri- og havbruksnæringen er selvsagt ikke alene om tilføre havene plast, men strandryddinger og årlige opprenskinger langs fiskefeltene viser at en stor andel av dette søppelet dessverre stammer fra næringen.

Det usynlige søppelet som havner i vårt marine spiskammer fører til spøkelsesfiske av både fisk og skalldyr. Spøkelsesfiske er et stort problem for forvaltning av ressursene, fordi slik skjult beskatning egentlig betyr tap for fiskeriene. Det økonomiske tapet kan være betydelig. Det er på høy tid vi prøver å få kontroll. Og det må sterkere lut enn strandrydding til om vi skal kunne gjøre en forskjell.

Noen i næringen vil hevde at vi har blitt flinke til å rydde opp etter oss og at tap av redskaper nesten ikke forekommer. Og skulle uhellet være ute, så kommer Fiskeridirektoratet og rydder opp på sine årlige ryddeaksjoner langs norske fiskefelt. Men faktum er heller at fiskeriene våre tilfører årlig store mengder plast i havet. Dette skjer i form av tråd, tauverk eller nett som kommer på avveie, og gjennom slitasje på plastbaserte redskaper. Miljødirektoratet regner med at mindre enn ti prosent av dette ender opp som strandsøppel. Resten flyter i havene eller havner på havbunnen. I tillegg forårsaker daglig bruk i alle deler av fiskerinæringen betydelige utslipp av mikroplast.

En del av strandsøppel fra Svalbard – minst 90% av dette kan relateres til fiskeri (Foto: Roger B. Larsen)

Kan vi øke verdiskapingen i sjømatsektoren uten bruk av plast?

I vår moderne fiskerinæring er det krav til effektivitet og inntjening. Det gjør at utstyr regelmessig må skiftes ut på grunn av slitasje. Generelt kan vi si at levetiden til ulike fiskeredskaper varierer med brukstid og hvor hardt de anvendes. I praksis snakker vi om levetid som varierer fra opptil flere år og ned til bare én enkelt sesong. Hvorfor må redskapene lages av «evigvarende» plast når levetiden er så begrenset?

Fiskerier over hele verden står overfor en enorm utfordring med å finne løsninger som kan forhindre enda mer skade på naturens mangfold og potensielle utbytte i form av mat. Norge er i en særstilling ved at vi er en sjømatnasjon. Vi har også ambisjoner om å være verdensledende på det meste.

Kongekrabbe viklet inn i restene av et fiskegarn av nylon (Foto: Roger B. Larsen)

Den norske fiskerinæringen står for produksjon av 3-4 millioner tonn sjømat hvert eneste år. Eksportverdien alene nærmer seg 110 milliarder kroner. Det tilsvarer en verdiskaping på flere millioner kroner for hver direkte ansatt i sjømatindustrien. I tillegg kommer alle ringvirkningene av aktivitet i både privat og offentlig sektor. Om vi steller oss fornuftig og utvikler fiskerinæringen på en bærekraftig måte kan vi mangedoble verdiskapingen i denne delen av norsk næringsliv. Men kan vi nå de skyhøye ambisjonene uten plast og samtidig bruke moderne redskaper?

Vår ambisjon er å «ta det onde ved roten». Vi vil finne løsninger som gjør at våre framtidige fiskerier i størst mulig grad bruker «smarte» materialer som forsvinner over en viss tid.

SFI Biodegradable plastics for marine applications

Tildelingen av et Senter for forskningsdrevet innovasjon (SFI) for å utvikle bio-nedbrytbare plastmaterialer er store greier for en bitteliten forskningsgruppe. Vi er stolte over den tilliten som styret i Norges forskningsråd har vist oss. Målet er at forskningsmiljøer i samarbeid med fiskeri- og akvakulturnæringen skal finne frem til løsninger som eliminerer eller reduserer problemene dagens former for syntetisk plast skaper. Ambisjonen er å sette Norge i en ledende posisjon for å styre overgangen til bruk av bio-nedbrytbare materialer i fiskeri- og akvakulturnæringen.

Bak senteret står 14 industripartnere fra fiskeri, havbruk og utstyrsleverandører, samt fem nasjonale forskningsinstitusjoner (UiT – Norges arktiske universitet, SINTEF Ocean, Norner forskning, SINTEF Industri og Norsus) og fire internasjonale forskningsinstitusjoner. I tillegg deltar offentlige etater og organisasjoner som Fiskeridirektoratet, Miljødirektoratet, Norges Fiskarlag, Norges Råfisklag, Senter for Hav og Arktis og SALT.

SFI Biodegradable plastics er satt sammen av seks tema. Vi skal utvikle nye plasttyper, teste styrke, holdbarhet og nedbrytingstid, utføre forsøk på ulike fiskefartøy og oppdrettsanlegg, gjøre analyser av motivasjonen for å kunne ta i bruk nye materialer i fiskerinæringen, og analysere og teste gjenvinnbarheten av materialer fiskerinæringen bruker.

Arbeidet med å utvikle nye, smarte bio-nedbrytbare plasttyper hvor man kan kontrollere nedbrytningsgrad og -hastighet i et marint miljø, vil være med på å gi oss et løft innen forskning og industriell utvikling. Prosjektet skal utdanne mange PhD-, postdoktor- og mastergradsstudenter i løpet av de neste åtte årene. Vi er ikke i tvil om at senteret vil være bidra til å løfte kompetansenivået og konkurransefortrinn betydelig på dette området – i produksjonsbedrifter og på leverandørsiden. For fiskerinæringen vil introduksjon og bruk av de nye materialene utvilsomt gi næringen enda et løft i miljøprofilen.

Ordinær og bio-nedbrytbar plast i fiskerinæringen

Ordinære syntetiserte fibre er basis for tråd, nett og tauverk som brukes i fiskeriene. Disse lages av langkjedete karbon-molekyler, der råvaren kommer fra olje. Den kjemiske sammensetningen i ulike materialer som nylon, terylene og ulstron, og måten de produseres på, bestemmer styrke og holdbarhet. Hvis hele redskaper eller deler av dem tapes i naturen, så vil alle de vanlige materialene brytes langsomt ned. Sluttproduktet er mikroplast som blir værende i miljøet i uoverskuelig framtid. Tråd, nett og tauverk slites også under vanlig bruk. Det avgis dermed årlig tonnevis av mikroplast fra alle segmenter i fiskerinæringa. Dette vil vi gjøre noe med.

Vi vil i årene som kommer være i stand til å lage «smarte» materialer. Ved å tilsette forskjellige komponenter kan vi modulere nedbrytningshastighet. Ulike mikroorganismer, bakterier, alger og enzymer vil da kunne bryte materialene ned over tid. Sluttproduktene blir ufarlige produkter som vann og CO2. Det nye senteret må finne balansen mellom brukervennlighet, effektivitet og nedbrytingstid for å konkurrere med dagens produkter som anvendes i fiskeriene.

 

Når den praktiske undervisningen blir gjort digitalt

Skrevet at Tore Seternes

Kobling av praksis og teori gir gjerne bedre læring. Når kunnskapen får en praktisk setting blir den til kompetanse. Ved et universitet kan det være utfordrende å få til når det meste av undervisning foregår i klasserom og auditorier. For akvamedisinstudentene er det litt annerledes. I alle fall på kurset i klinikk og HMT-evaluering som alle studentene gjennomfører som del av sitt studie. Kurset har et intensivt undervisningsopplegg der det meste foregår ute, så og si på merdkanten. I dette spesielle året måtte vi løse kurset digitalt. Vi fikk jobbet frem gode løsninger, men noe mistet nok årets studenter.

Kurset før korona

Klinikkkurset (BIO-3603) har i flere år blitt gjennomført i samarbeid med næringsaktører og ÅkerBlå til samme tid og på samme sted. Kurset er lagt til Frøya. Frøya er et kjent miljø i norsk lakseoppdrettsnæring med alle ledd i produksjonen, fra settefisk til slakteri. Altså, relativt kort mellom leddene i produksjonskjeden. Her har studentene fått opplæring i veterinærmedisinske feltrutiner og prosedyrer ved inspeksjon, prøvetaking og disseksjon. De har også gjennomført evaluering av helse, miljø og teknologi (HMT) til et oppdrettsanlegg ute på anlegg. Et av kursets mål er å motivere studenter til en karriere som aktive aktører og bidragsytere til utvikling av oppdrettsnæringen. Studentene samles og reiser til Frøya for å lære mer om den praktiske hverdagen ferdigutdannede fiskehelsebiologer møter. De lærer hvordan arbeid i førstelinjen foregår, på merdkanten ute på oppdrettsanlegg. At studentene er på tur sammen i en uke har også en sosial nytte som ikke skal undervurderes.

Deler av arbeidet er på merdkanten, her lines det på nota (venstre). Det gir studentene et god inntrykk av dimensjonene og hva arbeide med uttak av fisk fra nota egentlig innebærer. Studenter observerer notfisk og folk fra dekket av en servicebåt (høyre), med tid til å diskutere hva de er med på.

På kurset deltar studentene i det praktiske arbeidet som fiskehelsebiologer gjennomfører ute på anleggene. De håndterer fisk og utstyr, og kan få svar på spørsmål direkte fra personell som har dette som sin faste jobb. Tilgang på førstehåndskunnskap om arbeidet de senere selv skal gjennomføre er uvurderlig. Det er ikke noe vi får til med pensumlitteratur og klasserom. Ved å delta i praktisk gjennomføring får studentene en annen innsikt i hva oppdrettsproduksjonen innebærer, og hvilke utfordringer og begrensinger den setter for fiskehelsebiologer.

Hvordan teller man lus? Hvilke stadier telles? Hvordan får man tak i fisken? Har det betydning for vurderingen? Hvordan kan man sikre seg at fisken man teller lusa på er representativ for merden?

Helsekontroll. Her er det tatt ut fisk fra merden i bildet til høyre. Metoden som benyttes for å få tak i fisken har betydning for resultatet; hvordan kan en sikre at fisken en får opp er representativ for hva en ønsker å undersøke?

Hvordan er miljøtilstanden ved anlegget? Studentene er med og undersøker status. Her studeres innholdet fra en bunngrabb. Omgivelsene er viktig for fiskens velferd og helse, og for fiskehelsebiologene er det nødvendig med en forståelse av miljø også ut over tilstanden inne i merden.

 

Digital løsning på kurset

Bilde viser dataskjerm fra besøk på settefiskanlegg med obduksjon og vaksinekontroll av settefisk. Det et litt bedre enn å lese om det i en bok, men langt i fra den praktiske nytteverdien studentene får ved å delta selv.

Bildene over er fra i fjor. Årets kurs var ferdig planlagt, men en uke før oppstart kom beskjeden fra næringsaktørene; på grunn av endringer i smitterisiko kan vi ikke lengre ta imot besøk på anleggene våre. Siden kurset er obligatorisk i et studieprogram som gir reseptrett, kunne det ikke avlyses. Men hvordan gjennomfører man et praktisk kurs ute i næringen, når næringen ikke kan ta imot studentene? En sentral aktør i kurset, Åkerblå, fikk heller ikke tilgang til oppdrettsanleggene for kontroll. De måtte finne andre løsninger for hvordan de kunne observere fisken og anlegget og ta ut prøver for senere analyse. De har tatt i bruk direkteoverført video. Ansatte ved anleggene ble utstyrt med kamera på hjelmen og bildene ble sendt live tilbake til Åkerblå. Med direkte kommunikasjon kunne de beskrive arbeidsoppgavene de ville ha utført til personellet som bar hjelmkamera. Personellet ble fjernstyrte stedfortredere for fiskehelsepersonell. Kunne de hjelpe til med gjennomføring av klinikk kurset også? Årets kurs ble dermed gjennomført hjemmefra hvor studentene var pålogget sin egen PC.

Gode digitale løsninger gir ikke fullverdig erstatning for praktisk øvelse

Den digitale versjonen av kurset gikk etter planen og med svært stor innsats fra Åkerblå fikk man gjennomført kurs og program etter beste evne. Både studenter, forelesere og arrangører skal ha honnør for gjennomføring, deltakelse og generell positiv innstilling til den nye digitale hverdagen vi har fått tildelt i disse koronatider. Men kurset slik det har vært tidligere er et praktisk kurs med sosialt samvær med praktisk arbeid på land og hav. Det er håndtering av fisk og bunnprøver, båt og bilkjøring i tillegg til klatring på båter og merder. Lukt og andre sanseinntrykk overføres ikke gjennom en dataskjerm. For å få god tid til spørsmål og diskusjon jobber vi sammen med profesjonelt fiskehelsepersonell på merdekanten i små grupper. Vi må være ærlige å si at for studentene i år er nok læringsutbyttet av den digitale versjonen av kurset mindre enn tidligere år, mest på grunn av at den praktiske og sosiale dimensjonen ikke har vært tilstede i lik grad.