Smågnageren er viktigere enn du tror

Skrevet av Eeva Marjatta Soininen, forskningsgruppen Northern Populations and Ecosystems

Smågnagerne er kanskje ikke de mest synlige dyrene når man går på tundraen i Nord-Norge. Men de sykliske svingningene i smågnagernes bestandstetthet utgjør pulsen i hele næringsnettet på tundraen. Smågnagerne er nemlig både viktige byttedyr og spiser mye planter. Så selv om vi ikke ser dem så ofte, så former de mye av plante- og dyrelivet rundt oss.

Norsk lemen er et spesielt viktig byttedyr for fjellrev og snøugle. Yngling av disse rovdyrartene på Varangerhalvøya er avhengig av at de har tilgang på lemen som mat (foto: Rolf. A Ims)

Alle rovdyrene på tundraen spiser smågnagere. Enkelte rovdyr, slik som fjellrev og snøugle, er spesielt avhengige av lemen. De yngler bare når det er toppår for gnagere. Andre rovdyr med mer generalisert diett, slik som rødrev og kråkefugler, yngler også mer i toppår med smågnagere. Dette systemet gjør at toppår for gnagere gir økning i bestandstettheten hos rovdyr. Det igjen gir negative ringvirkninger for andre byttedyrarter, som for eksempel rypa.

Smågnagerne har også betydning for plantelivet. I toppårene spiser smågnagerne til sammen store mengder planter. Det påvirker både plantesamfunnets biomasse og artssammensetning. Vi kan godt si at smågnagere vedlikeholder sine habitat. Både mose og dvergbusker på heiene hadde sett nokså annerledes ut uten gnagertopper.

Hva gjør klimaendringene med dette systemet?

Vi forventer varmere og våtere vintre som følge av klimaendringene. Mildværsperioder med regn om vinteren fører til at snøen smelter og fryser flere ganger. Dermed dannes islag i snødekket. Islag begrenser spesielt gnagernes tilgang til mat under snøen. Dette vil igjen kunne resultere i færre og sjeldnere gangertoppår. Så hva skjer med gnagerne når klimaet forandrer seg? Og hvordan påvirker forandringer i gnagersykluser resten av økosystemet?

Kameraene er plassert i metallkasser som har hull i begge ender. På denne måten er kameraboksen integrert som en del av gnagernes naturlige habitat. Kameraet sitter i taket og ser nedover, og tar bilde av alle dyr som passerer under (foto: Mike Murphy)

For å svare på disse spørsmålene, har vi utviklet et system for kameraovervåking av smågnagere. Arbeidet gjøres i regi av prosjektet Klimaøkologisk Observasjonssystem for Arktisk Tundra (COAT). I prosjektet har vi en egen forskningsmodul med fokus på gnagere.

Vi antar at klimaforandringene hovedsakelig påvirker gnagere via endringer i vinterklimaet. Det gjør det spesielt viktig å forstå hva som skjer under snøen. Nye typer viltkamera gjør det mulig å overvåke både røyskatt og snømus året rundt – også under snøen. Kameraene tar bilder av gnagere og rovdyr som er spesialisert på å spise dem.

Røyskatt med lemenbytte

Bildene gir oss mulighet til å observere dynamikken mellom rovdyr og gnagere, for eksempel å skille nedgang i gnagerbestand som skyldes predasjon fra nedgang som skyldes vanskelige snøforhold. I tillegg registrerer kameraene temperatur, som brukes til å beregne når gnagerne har vært under snøen.

Informasjon om snøforholdene brukes for å modellere effekten av snø på populasjonsdynamikk av gnagere.

Informasjon om smågnagernes bestandstetthet er viktig for en optimal forvaltning av utrydningstruede dyr, som for eksempel fjellreven. Smågnager-syklusene har en indirekte effekt på småvilt, som rypa. Informasjon om smågnagere kan hjelpe å forutsi småviltbestandens utvikling og dermed forvaltningen av småvilt.

Parallelt med utsetting av kamera og innsamling av bilder, har vi også jobbet med automatisering, optimalisering og modellering av bildene. Noen av bildene kan du se her.

I noen lokaliteter er det flere dyr som ofte kommer innom kamera. Her en røyskattfamilie, der tre ungdyr gjentatte ganger var på bildene.

 

Kan vi sette en pris på føling i fjæra?

Tekst av Margrethe Aanesen, Norges fiskerihøgskole, MarES – Changing use and values of marine ecosystem services in Arctic Norway

Mange land, deriblant Norge, har sluttet seg til ideen om “blå vekst”. Det betyr at mye av den økonomiske veksten i årene framover skal komme i marine og maritime næringer. I utgangspunktet er dette godt nytt for et institutt som er dedikert til marine næringer. Forskere ved Norges fiskerihøgskole jobber ikke bare med marin næringsutvikling, men også potensielle konsekvenser av vekst i de blå næringene. Det har vi gjort lenge før “blå vekst” strategien ble unnfanget.

I Nord-Norge har det kommet mange planer for økt næringsaktivitet i kystsonen. Kommunene Balsfjord, Karlsøy, Lyngen, Målselv og Tromsø har vedtatt en felles kystplan for Tromsøregionen.

Oppdrettsanlegg (foto: Andrey Armyagov)

Noen kaller planen en «oppdrettsplan» fordi den foreslår en betydelig økning i areal avsatt til oppdrett av laks i området. I tillegg til vekstplaner for oppdrett i kystsonen, så har det, i alle fall før korona, blitt etablert nye fisketurismeanlegg langs kysten i nord. Det skjer til tross for at mange norske fritidsfiskere stiller spørsmålstegn ved det de mener er sløsing med fisk i turistfiske. Og så har vi fjordene våre, hvor det i noen tilfeller åpnes opp for sjødeponi. Hva betyr så alt dette?

Næringsutvikling basert på bruk av naturressurser må ikke bare være økologisk bærekraftig, den må også være sosialt bærekraftig. Med sosial bærekraft mener vi at befolkningen som bor i områdene aksepterer utviklingen. Det betyr også at det er mer lønnsomt for samfunnet at næringsaktører får en eksklusiv tilgang til våre felles marine ressurser, enn at de er allment tilgjengelig.

(foto: Julide Ceren Ahi)

For det er ikke slik at dersom oppdrettsselskap, fisketuristanlegg eller gruveselskap ikke får bruke ressursene og tjenestene som havet gir, så er det ingen som bruker dem. De ressursene som «blå vekst» strategien gir næringsaktører tilgang til, har alle en såkalt alternativ-averdi. Det betyr den velferden eller nytten ressursene gir hvis de er allment tilgjengelige og ikke brukes til næringsvirksomhet. Problemet er at mens næringsaktører kan operere med priser på det de bruker ressursene til, så kan den allmenne bruken av de marine ressursene oftest ikke måles i penger. For hva er markedsprisen på grilling i fjæra, å hente seg koksei til et sommerkveldsmåltid, å kunne bade i sjøen, eller bare sitte og høre på den særegne stillheten i fjæra? Det er vanskelig for politikerne å ta gode beslutninger om hvordan samfunnet skal bruke våre felles marine ressurser, når noen ressurser kan måles i priser mens andre ikke kan det. Da er det lett for at de som kan måles i priser vinner. Er det i det hele tatt mulig å sette priser på «føling i fjæra»?

(foto: Katja Kircher, Mostphotos)

I MarES-prosjektet har vi undersøkt dette. Vi har utført valgeksperiment ut fra kystplanen for Tromsøregionen, planene for gjenåpning av gruvevirksomhet i Repparfjorden, og planer for vekst i turistfiske i kystsamfunn i Nord-Norge. Dagens planer for utvikling i disse næringene presenteres som ett alternativ. Og så lager vi andre alternativ der den planlagte næringsaktiviteten enten ikke finner sted, eller er redusert. – Om man velger alternativ med lav eller ingen næringsaktivitet, så må man være villig til å betale mer i skatt som kompensasjon for bortfall av inntektene og jobbene næringsaktiviteten ville gitt. I valgeksperimentet beskrives både fordelene med den planlagte næringsvirksomheten, som skatteinntekter og jobber, og ulempene, som fare for forurensing og ødeleggelse av marine økosystem. Den økte skatten som følger med de alternative planene, gjør at vi kan beregne priser på tjenester som kysten og de marine ressursene gir oss allmennbrukere.

Så hva er prisene folk setter på de «gratis» tjenestene vi nyter godt av langs kysten? Når det gjelder oppdrettsplanen, så beregnet vi hva det var verdt for folk som bor i de fem kommunene i og rundt Tromsø å få redusert antall nye lokaliteter. Det viktigste for dem var å få redusert potensiell forurensing av havbunnen. For det var hver person villig til å betale rundt 600 kroner mer i skatt per år. De var også villige til å betale for å redusere faren for at oppdrett påvirker kysttorsken negativt. Her var betalingsvilligheten 260 kroner per person per år. Noe overraskende var det at de som deltok i undersøkelsen bare var villige til å betale rundt 170 kroner per person per år for å redusere negative effekter på villaksen. På den andre siden var folk ikke villige til å betale noe for å redusere sjenerende utsikt eller støy fra oppdrettsanlegg. Det kan skyldes at de ikke synes det å se og høre oppdrettsanlegg er sjenerende.

(foto: Julide Ceren Ahi)

Når det gjelder fisketurisme, undersøkte vi først om folk var villige til å betale mer skatt for at myndighetene skulle jobbe mer for å øke kysttorskbestandene – noe de var. Hver person var i snitt villig til å betale over 900 kroner mer i skatt per år for det. Videre ba vifolk om å angi hvordan de ønsket å fordele ressursen kysttorsk mellom kystfiskere, fisketurister og private fritidsfiskere som dem selv. Her var det en helt entydig tilbakemelding om at folk ikke ønsket å regulere kystfiskerne strengere, mens de aksepterte at de selv som private fritidsfiskere ble strengere regulert, dersom også turistfiskere ble det. I de to nevnte undersøkelsene var resultatene relativt klare og entydige.

Det var de ikke i gruveundersøkelsen. Der spurte vi om folk var villige til å betale mer i skatt for å få redusert planene for ny gruvevirksomhet i Repparfjorden. Vi tok ikke opp diskusjonen for eller imot gruvevirksomheten. Også her var det forurensingen av havbunnen som var det viktigste for folk. Hver person var i snitt villig til å betale over 1000 kroner i skatt for at gruveselskapet skulle gjøre tiltak slik at havbunnen fortest mulig skulle bli rehabilitert. Folk var også villige til å betale 550 kr per person for å unngå negative effekter av gruvevirksomheten på villaksen i Repparfjordelva. De var derimot ikke villige til å betale noe for å få lokale arbeidsplasser i gruvevirksomheten.

Så hva sier disse resultatene oss? Resultatene er et første forsøk på å finne priser på goder som ikke omsettes i marked, og som derfor ikke har en markedspris. Likevel er de viktige for vår velferd. Problemet er at de ofte blir oversett av beslutningstakere fordi de ikke har priser. Da kan de ta beslutninger som er langt fra optimale for samfunnet, det vil si oss.

Forskningsprosjektet MarES – Changing use and values of marine ecosystem services in Arctic Norway har fått støtte fra Norges Forskningsråd i perioden 2017-2020 og avsluttes 31.12.2020. Prosjektet har vært ledet av professor Margrethe Aanesen ved Norges fiskerihøgskole, og i tillegg har professor Claire Armstrong, professor Vera Hausner og stipendiat Julide Ceren Ahi deltatt fra UiT. Nasjonale samarbeidspartnere er Akvaplan-niva, NMBU, Universitetet i Stavanger, og Menon. Prosjektet har hatt en internasjonal ekspertgruppe bestående av økonomer som jobber med naturressurser fra UK, Danmark og Canada, og en styringsgruppe med representanter fra Fiskeridirektoratet og Fylkesmannen i Troms sin miljøvernavdeling.

Hjernens termostat

Skrevet av Vebjørn Jacobsen Melum, forskningsgruppen Arctic Chronobiology and Physiology 

Jorda roterer rundt sin egen akse og samtidig går den i en elliptisk bane rundt sola. Ved å rotere rundt sin egen akse skaper den natt og dag for majoriteten av verdens befolkning. Ved å gå i bane rundt sola skapes årstider. Både natt og dag og årstider er rytmiske hendelser som gjentar seg, dag etter dag, og år etter år. I de polare områdene er de lysmessige endringene gjennom et år fenomenale. Det går fra 24 timer med mørke til 24 timer med fullt dagslys. Som en følge av denne ekstreme endringen i lysinnstråling og temperatur er det store svingninger i planteproduksjon. For dyr som lever av å spise planter, går det fra perioder med overflod til perioder med minimal næringstilgang. For å overleve i et slikt miljø, hele året, kreves intrikate tilpasninger. Det finnes utallige av dem, og en av dem er å gå i dvale i den del av året som byr på ugunstige næringsforhold.

Arktisk jordekorn (foto: Shona Wood)

Et av de mest ekstreme eksemplene er arktisk jordekorn. De lever i Nord-Amerika og Sibir, og tilbringer opp til 8 måneder av året under jorda i sine hi hvor de ligger i dyp dvale. Ved hjelp av denne livsstrategien sparer de energi, men hvordan kan de klare å svitsje mellom full aktivitet og en nærmest komatøs tilstand?

 

De fleste pattedyr har en kroppstemperatur på rundt 36-37 grader. Denne høye temperaturen sørger for effektiv drift av kroppslige funksjoner. Muskulatur eller fordøyelse fungerer uavhengige av dagens værmelding, på en helt annen måte enn hos vekselvarme dyr som frosk og slanger. Likevel har det en pris. En høy kroppstemperatur forutsetter et høyt stoffskifte (metabolsk aktivitet), altså at kroppen bruker mye energi bare på å holde seg i gang (hvilemodus). Derfor vil en lavere temperatur gi lavere metabolsk aktivitet og mindre energi vil brukes per tidsenhet (sparebluss). Og det er dette prinsippet dyr som kan gå i dvale utnytter til sin fordel, i en unik energisparende strategi. For mange gnagere, som arktisk jordekorn, er i stand til å senke kroppstemperaturen sin til nær omgivelsestemperaturen. «Verdensrekorden» er så lavt som -2.9 grader, det vil si under frysepunktet til vann! Hvordan i alle dager kan et pattedyr tolerere å ha en så lav kroppstemperatur og hva er det som utløser denne dramatiske endringen?

Hjernens termostat (illustrasjon: Shona Wood, Vebjørn J. Melum)

For å forstå det må vi se til hjernen. Inne i hjernen er det et kontrollsenter for kroppstemperatur. Den ledende teorien om hvordan et pattedyr kan nå minusgrader, er at hjernens termostatfunksjon er blitt skrudd ned til, nettopp, minusgrader. Hvis hjernen sier at minusgrader er greit, ja da iverksettes ingen motstandsmekanismer for å forhindre at kroppstemperaturen faller så lavt. Kroppen lar seg rett og slett kjøle ned av omgivelsene. Men hjernen aksepterer ikke alt. Det kommer en nedre grense for hva hjernen og kroppen tåler. Når grensen nås, ringer alarmbjellene.

Gnagerkroppen starter da å aktivt produsere varme, akkurat som en ovn som får beskjed av termostaten at temperaturen er for lav. Og sånn kan et arktisk jordekorn holde det gående. Det kan ligge i sitt hi, sammenkrøllet og holde en jevn kroppstemperatur på rundt minus 1 grad i en måned. Men, med så lave temperaturer, hvordan kan hjertet fortsette å slå slik at blodet sirkulerer? Hvordan kan cellene i hele dyret få det oksygenet og energien de trenger? Og hva skjer så etter en hel måned i denne tilstanden?

Hamster i dvale (foto: Vebjørn J. Melum)

Våken hamster (foto: Vebjørn J. Melum)

 

 

 

 

 

 

 

Etter en måned begynner temperaturen plutselig å stige igjen. Hurtig stiger den tilbake til «normal» kroppstemperatur på rundt 36-37 grader. Her holder den seg i noen timer, mens gnageren fortsatt ligger sammenkrøllet som en ball og tilsynelatende sover, før den returnerer ned til minusgradene. Hvordan hjernen igangsetter og kontrollerer vekslingen mellom dyp dvale og oppvåkning/gjenoppvarming vet vi fortsatt ikke. Vi vet heller ikke nøyaktig hvor hjernens termostatfunksjon er lokalisert, eller hvordan den blir regulert for å bestemme når et dyr skal gå inn i dvale.

Det vi vet er at det er et uhyre spennende forskningsområde som vi i forskningsgruppen Arktisk kronobiologi og fysiologi prøver å finne svar på. Om vi lykkes i å forstå hvordan jordekornet skrur ned hjernens termostat vil det ha potensiale til å kunne brukes i en rekke medisinske sammenhenger. Blant annet hvordan man kan minimere systemisk vevsskade ved hjertestans og slag, og hvordan man kan bevare organer som skal transplanteres.

Searching the Arctic ocean for novel antimicrobials – our first research cruise experience

Written by Andrea Iselin Elvheim and Ataur Rahman.

Sea ice.

In august we attended a research cruise on the research vessel “Kronprins Haakon”, the Biodiscovery Cruise 2020. We were three scientists from our group: The Marine Bioprospecting Group, together with 14 other scientists mainly from UiT. The aim of our group was collecting marine invertebrates, marine sediments, and marine bacteria for discovering bioactive compounds. The discovery of novel bioactive compounds is important in combating the increasing amount of antimicrobial resistance in bacteria and finding new medicines. New compounds can also be useful in research and other industries.

The participants from the Marine Bioprospecting Group: Ataur Rahman, Klara Stensvåg and Andrea Iselin Elvheim, on Bear Island.

We started in Longyearbyen 4th of August and travelled north towards the ice edge. Our first sample was from the northernmost part of the cruise. Then, we sampled while moving south along the Atlantic Ridge. A major highlight was sampling from the Molloy Hole, the deepest part of the Arctic Ocean, with approximately 5550 m below the surface. With the help of the experienced crew, we finally succeeded in collecting sediments after three unsuccessful tries. We also sampled around and on Bear Island, before we travelled back home to Tromsø on 22nd of August.”

The stations where we collected samples.

In the northernmost parts of our journey, we got to experience large amounts of drift ice, a truly fascinating sight. After a week of nice weather and almost completely calm waters, we encountered the rough, undulating sea and experienced seasickness for the first time. That cost us one day of working! We went ashore on Bear Island, on a beautiful beach below a bird cliff with unfathomable amounts of birds. There were several species of birds including fulmars, seagulls and puffins. After the final sampling near Bjørnøya, we had the chance to catch some fish. We enjoyed sorting the fish, learning how to cut filets, and got to taste some fresh shrimps on board.

Puffins on Bear Island. Foto: Aleksander Eeg.

Life on board followed specific routines. It revolved around meals and collecting samples, in that order. We were sampling continuously through the day and night, and therefore had to work in shifts. Between the meals, our shifts, and when waiting for samples we had some spare time. This was mainly spent socialising, sleeping, reading, watching movies, exercising, knitting, or watching whales and birds. Parts of the journey, a young falcon accompanied us, after he lost his course and got stranded on the ship. He soon won everyone’s hearts and became the mascot of the cruise.

The falcon visiting RV Kronprins Haakon during the cruise. Foto: Aleksander Eeg.

For our group the sampling mainly consisted of isolating bacteria from marine invertebrates and marine sediment. We collected marine invertebrates, such as sponges, sea stars, sea anemones, and bryozoans from the bottom of the sea using a beam trawl, a small trawl that moves along the bottom. First, we rinsed the contents of the beam trawl were of sediments. Then, we sorted the animals. We crushed interesting invertebrates with sterile salt water, and plated this on agar plates. To collect sediments we used a box corer, a box with a lid for the bottom that closes after the box has been pressed into the sediments. The sediments are trapped in the box exactly as they were on the seabed. After collecting sediments we mixed it with sterile salt water and plated it on agar plates. In addition to growing bacteria, we also froze down big quantities of animals for chemical extraction of compounds.

The marine invertebrates we collected from the Molloy Hole.

Taking sediment sample from the box corer.

Now that we are back in Tromsø, we will continue with isolation, identification and characterization of interesting marine bacteria that could be a potential source of bioactive compounds. We are excited about getting some new equipment that will help with identifying bacteria, and we are optimistic that we will get some good results. For the two of us, this was our first research cruise. We had many new and amazing experiences, got to know some new people, and hopefully we will get some interesting results, helping us towards finishing our PhDs.

Bacteria from one of the marine invertebrates.

 

Et liv i isolasjon

Skrevet av Professor Jørgen Berge.

De fleste av oss har de siste månedene opplevd at livet har endret seg, for noen med isolasjon og karantene, som kan føles traumatisk. Da kan det være en trøst å vite at andre har det like vanskelig, kanskje til og med verre …

En gule flyteenhet med begroing der organismer har levd i isolasjon, sannsynligvis hele sitt liv. Jørgen Berge i bakgrunnen. Foto: Malin Daase.

Som en del av et forskningsprosjekt rettet mot døgnmigrasjon og biologiske klokker hos den lille raudåta (en hoppekreps med det latinske navnet Calanus finmarchicus), har en gruppe forskere fra UiT jobbet i Ramfjorden utenfor Tromsø siden tidlig i 2019. Ved hjelp av jevnlige og regelmessige innsamlinger av levende dyr har vi kunnet ta disse tilbake til laboratoriet på universitetet og gjort målinger i et kontrollert miljø for å karakterisere deres døgnrytme. Men for å kunne relatere denne til vandringer i fjorden og ikke minst til de miljøvariablene (lys, temperatur, saltholdighet m.m.) som er med på å styre døgnrytmen til disse dyrene i naturen, har vi også hatt et havobservatorium stående ute i fjorden. Det har stått forankret på 125 meters dyp, med en vaier opp til en flyteenhet cirka 15 meter under havoverflaten. Langs vaieren hadde vi plassert ut en rekke sensorer og instrumenter som har gjort kontinuerlige målinger fra vi satte ut observatoriet i mars 2019 og frem til det ble hentet opp i juni i år.

Da vi nylig var ute med forskningsskipet «Helmer Hanssen» for å hente inn observatoriet, gikk mine tanker i retning av covid-19 og den situasjonen vi alle har befunnet oss i den siste tida. For midt ute i fjorden, på cirka 15 meters dyp, levde det to små sjøstjerner sammen med mange andre fastsittende organismer. Nå er ikke det at det gror på installasjoner under vann noe spesielt – alle båteiere fører en årlig kamp mot organismer som fester seg og vokser på undersiden av båten over tid. Også på havobservatorier kan sensorene ofte bli dekket av alger, rur, anemoner, sekkedyr og andre organismer. Men synet av de to små sjøstjernene fikk meg til å tenke på covid-19 og på en gammel biologisk «lov» som også kalles for Thorson’s rule. Disse to sjøstjernene har med all sannsynlighet kommet dit som larver og har deretter levd hele sitt liv i fullstendig isolasjon. De aller fleste sjøstjernene har frittlevende larver som lever de første ukene av sitt liv i vannmassene, før de som små voksne slår seg ned på havbunnen. Den havbunnen disse sjøstjernene fant var en gul metallkule midt i havet. Her fant de et hjem og mat og utviklet seg, fra de som larver slo seg ned en gang i fjor sommer.

Dette med frittlevende larver i polare strøk er noe som har opptatt biologer i svært lang tid, helt tilbake til den britiske oppdageren Sir James Clark Ross (1800-1862). Ross er i dag kjent for sine ekspedisjoner i både Arktis og Antarktis, og gjorde tidlige undersøkelser av dyrelivet på havbunnen både i dyphavet og i de polar strøk. Han registrerte mange likshetstrekk mellom organismene som lever her, og mente at det derfor på en eller annen måte måtte være en sammenheng mellom dyphavet og de polare hav. Dette ble senere fulgt opp av den danske biologen Gunnar Thorson som gjorde studier av reproduksjon hos bunnlevende organismer i forskjellige verdenshav. Thorson mente han kunne gjenkjenne et bestemt og universelt mønster: bunnlevende organismer i tropiske og tempererte strøk produserer mange små frittlevende egg/larver, mens bunnlevende organismer på høyere breddegrader og i dyphavet oftest produserer få, store avkom uten et frittlevende stadium. Dette refereres i litteraturen til Thorson’s rule, og ble av enkelte så sent som på 1980-tallet ansett som en av de eneste universelt korrekte «reglene» vedrørende utvikling og økologi hos marine virvelløse dyr. Etter hvert som vi har fått bedre innsikt i og kunnskap om faunaen i Arktis, Antarktis og i dyphavet, viser det seg at en slik generell regel ikke stemmer, og Thorson’s rule er i dag et mer eller mindre lukket kapitel. De to sjøstjernene på den gule metallkula midt i havet er et godt bilde på dette. Som de aller fleste bunnlevende organismer i tropiske og tempererte strøk, er frittlevende egg og larver en viktig og svært utbredt strategi for reproduksjon og spredning, også på høyere breddegrader. Funn av blåskjell på Svalbard er et annet godt eksempel på det samme; det er i dag godt dokumentert at blåskjell har vært vanlig på Svalbard i varme perioder de siste 10 000 årene og så sent som i vikingtiden for 1000 år siden. I morderne tid, og som en direkte følge av en generell oppvarming i Arktis, har blåskjell igjen etablert seg på Svalbard. Spredningsmekanismen for denne reetableringen antas å være nettopp frittlevende larver som transporteres med havstrømmer nordover fra kysten av Nord-Norge.

En av de to sjøstjernene som har levd sitt liv på den lille gule planeten. Foto: Malin Daase.

Som midt i et stort kosmos, uten kontakt med andre artsfrender, og som et resultat av at sjøstjerner også i Arktis har frittlevende larver, har de to sjøstjernene levd sitt liv i isolasjon på sin gule, lille, runde planet av stål. Kanskje var det flere enn disse to som opprinnelig slo seg ned her. Kanskje var det noen uheldige, eller kanskje eventyrlystne, individer som kom for langt ut mot kanten og falt ned fra den lille kloden. De to som levde der da vi hentet opp observatoriet har derimot med all sannsynlighet levd der hele sitt liv. Vi får håpe de var gode venner.

Dette innlegget ble først publisert som en kronikk i Nordlys 16.juni 2020.

Species on the move make way for new feeding interactions

Marine species are on the move due to global change, but can they start feeding on local species that they have never encountered before?

Photo: Audun Rikardsen

Written by Laurene Pecuchet and Marie-Anne Blanchet

Temperature changes in the world’s ocean are causing marine species to move. As these species settle in new areas, they might come across species they never encountered before. In order to establish themselves in a new area they need to feed on the unfamiliar species. Can the newcomers feed on these, and what could be the consequences for the local ecosystems? In a new study published in Global Change Biology, researchers from the BRIDGE research group at Norges fiskerihøgskole (NFH) predicted feeding interactions between range-shifting species and Arctic species and investigated the potential impacts of these new interactions on the Barents Sea Arctic ecosystem.

Many boreal species (orange) are expanding their distribution range polewards, entering the historically Arctic ecosystem (blue)

The Barents Sea is a productive ecosystem located off the northern coast of Norway and Russia. This ecosystem has experienced large species redistribution during the last decades with poleward shifts of boreal species.In recent years (2014-2017) about 10 boreal species were found inside the nets of scientific surveys in the Arctic region of the Barents Sea. These boreal species have the common characteristic of being generalist species, meaning that they eat a large array of preys. Then, could these incoming boreal species start feeding on Arctic residents, and by doing so deepen their impact on the Arctic ecosystem?

To predict feeding interactions between the incoming boreal species and the Arctic residents, the BRIDGE researchers used previous knowledge on who eats whom between the species in the Barents Sea.

–We found that all incoming boreal species have the same potential to feed on Arctic preys, as well as being eaten by Arctic predators, says the researchers. – Cod, for example, is predicted to start feeding on Arctic species such as polar cod or the northern krill, but they could also become the prey of Arctic mammals such as the narwhal or the beluga.

Range-shifting boreal species (orange) such a cod might start to eat and be eaten by Arctic species (blue)

These new feeding interactions might intensify the impacts of invasive boreal species on the Arctic ecosystem by reshaping the network of who eats whom. Because the incoming species are generalists, they have the potential to connect some food chains more tightly together. This could make the system less resilient to perturbations because they could propagate through the network more easily.

In a rapidly changing world, it is becoming harder and harder to keep up with the pace of new ecological interactions. To document these changes analysis such as stomach content and isotope analysis can be too time and effort consuming. In this study, the authors circumvent these problems by using machine learning and prior knowledge on who eats whom to infer ecological interactions and help predict the impacts of range‐shifting species on ecosystems.

The article “Novel feeding interactions amplify the impact of species redistribution on an Arctic food web”

The research group BRIDGE

Priser til forskningsfilmen «Into the dark»

“Into the dark” vant to priser ved Columbia film festival. Foto: Michael O. Snyder

I januar 2018 ble fotograf og filmskaper Michael O. Snyder med Jørgen Berge og hans team på tokt i Arktis. Resultatet ble filmen «Into the dark». Nå har filmen vunnet to nye priser. Ved Columbia film festival vant «Into the dark» prisene for beste klipp og beste foto.

I “Into the dark” blir vi kjent med hvordan teamet forsker på om kunstig lys påvirker livet i havet under polarnatten. Polarnatten er den delen av året der det er natt hele døgnet, altså mørketid. Organismer som lever i Arktis har tilpasset seg de store sesongendringene i lysforhold, men det har vært uklart hvordan kunstig lys kan påvirke livene deres. Polarnattforskningen viser at arbeidslyset på forskningsskipet påvirker organismene i havet helt ned til 200 meters dyp. Det betyr at all tidligere forskning som ikke har tatt hensyn til dette kan ha feil data.

Into the dark hadde verdenspremiere på TIFF (Tromsø internasjonale filmfestival) i januar 2020 og har blitt vist på filmfestivaler rundt i verden. Tidligere pris filmen har vunnet er publikumsprisen på Around Film Festival Paris. Den var også semifinalist på Dumbo Film Festival. I tillegg har filmen ført til artikler i National Geographic, Oceanograpic, Scientific American og BBC.

Into the dark trailer

Bilder fra filmen

Michael O. Snyder sin webside

Forskningsartikkel om hvordan kunstig lys påvirker livet dypt ned i havet

Sak om polarnattforskningen på forskning.no

Sak om filmen på itromso.no

Om filmen på TIFF sine nettsider

Sak om filmen på UiT sine nettsider

Små mengder oljesøl vil skade polartorsken

Skrevet av Sunniva Katharina Thode.

Den lille, men viktige, polartorsken i Arktis skades av små mengder oljesøl, ifølge ny forskning.

Polartorsken er en viktig fiskeart i Arktis. Isen i Arktis blir mindre og det har gjort havet i nord mer tilgjengelig for oss mennesker. Når det blir mer trafikk, øker sjansen for oljeforurensning. Hva skjer med polartorsken hvis menneskene gjør en feil og forurenser med olje i Arktis?

Polartorskyngel skades av små mengder oljesøl. Den øverste yngelen er ikke utsatt for oljesøl mens de nederste ynglene er utsatt. Ynglene som ble utsatt for oljesøl er deformerte, mangler næring i plommesekken og er veksthemmet. Foto: Morgan Bender.

Små mengder oljesøl skader yngelen

Morgan Bender på laben. Foto: privat

Forsker Morgan Bender har vært «barnepasser» for polartorsk på laben. For noen har hun gjort lablivet til fisken, eggene og yngelen så likt i det fri som det er mulig å få til i en lab. For andre har hun økt temperaturen i vannet og forurenset vannet med råolje. Hun har funnet ut at eggene og yngelen tåler forurensing av råolje veldig dårlig.

Bare fem dråper olje i et stort basseng vann vil skade polartorskyngelen, sier Bender.

Hun har også forsket på når i livet til polartorsken oljeforurensning vil være mest skadelig.

– Polartorsken er mest sårbare for oljesøl når de er egg, yngel og rett etter de har gytt, sier hun.

Polartorskegg er sårbare for oljeforurensing. Foto: Morgan Bender

Polartorsken blir mer sårbare av økt temperatur

Det har blitt varmere i Arktis. Artene som lever i Arktis er godt tilpasset kalde temperaturer. Bender har forsket på hvordan polartorsken tåler oljesøl hvis havtemperaturene blir varmere. Hun har funnet ut at bare en økning på 2,3°C i havet gjør at polartorskens egg og yngel tar enda større skade.

– Vi må se mer på hvordan dyrene i Arktis tåler flere endringer samtidig, avslutter Bender.

Morgan Bender deltok i Forsker Grand Prix med sin forskning i 2018. Foto: privat.

Mer om polartorsken

Polartorsk er en nøkkelart i det arktiske økosystemet. En nøkkelart er en art som har en viktig rolle for balansen i et økosystem. Polartorsken sin viktige rolle er energioverføring fra dypet og opp i havoverflaten. Den spiser zooplankton på havdypet og spises av sjøfugl og annen fisk. Den kan bli opptil 50 cm lang, men er sjelden lengre enn 30 cm. Eggene og yngelen utvikler seg i små hulrom rett under havisen i Arktis og går dypere og dypere ned i havet jo større den blir.

Illustrasjon fra Benders avhandling.

Morgan Bender disputerte for graden PhD i naturvitenskap den 12. juni 2020 med avhandlingen ”Polar Cod in a Changing Arctic. Toxicity of crude oil on sensitive life history stages of a key Arctic species”. Veiledere for avhandlingen har vært førsteamanuensis Jasmine Nahrgang (Institutt for arktisk og marin biologi, UiT), Dr. Marianne Frantzen (Akvaplan-niva), Dr. James Meador (National Oceanic and Atmospheric Administration Fisheries Division in Seattle, USA) og Dr. Maxime Geoffroy (Fisheries and Marine Institute of Memorial University of Newfoundland in St. John’s Newfoundland, Canada). Bedømmelseskomiteen bestod av professor Daniela Pampanin (Universitetet i Stavanger) som førsteopponent, professor Jérôme Cachot (University of Bordeaux) som andreopponent og professor Stefano Peruzzi (Institutt for arktisk og marin biologi, UiT) som internt medlem og leder av komitéen. Disputasen ble ledet av dekan Kathrine Tveiterås (Fakultet for biovitenskap, fiskeri og økonomi, UiT).

Relaterte linker:

Avhandlingen “Polar Cod in a Changing Arctic” 

https://nordnorskdebatt.no/article/polartorskens-usikre-oppvekst-i

https://site.uit.no/ewma/2016/10/20/is-sperm-of-polar-cod-sensitive-to-petroleum/