BREATHE skal finne ut hvordan det vil gå med havisalgene i fremtiden

Et nytt prosjekt, BREATHE, skal forske på havisalger i Arktis. Havisalgene er viktige i det marine miljøet. Men vi vet for lite om hvordan de lever i isen og hvordan de påvirkes av klimaendringene. Da er det vanskelig å spå hva som vil skje med dem og de som er avhengige av dem. BREATHE vil forske sånn at vi får bedre modeller for hva som vil skje med havisalgene i fremtiden.

Havisalger lever i isen i de polare områdene. Foto: Karley Campbell

Havisalger er alger som lever i isen rundt polene. De er en viktig del av næringskjeden fordi de er mange og fordi de har fotosyntese. Fotosyntese får dem til å fange CO2 og bruke den til å lage oksygen og mat til andre, det kalles primærproduksjon. Havisalger slipper også ut CO2 og bruker O2 gjennom det som heter respirasjon. Reparasjonsprosessen i algene vet vi ikke noe om enda. Primærproduksjonen og respirasjon går opp eller ned med variasjoner i lys og næring. Det betyr at gassene og maten som algene gir til miljøet endrer områdene der de lever. BREATHE-prosjektet vil finne ut hvordan. Endringene i hva algene gjør og tilgang til næring er ikke godt representert i modeller som kan brukes til å forutsi fremtiden for havisalger. BREATHE vil lage bedre modeller for å forutsi hva som skjer med havisen. De bedre modellene vil ta med algenes tilgang til næring og respirasjonsprosessen. I fremtiden kan vi bedre vite hva som skjer med havisenes alger, gassene de produserer og helsen til polare marine miljøer når det er endringer i klima og miljø.

En havisalge. Foto: Karley Campbell

Prosjektet har fått 8 millioner kroner fra Forskningsrådet og vil pågå frem til 2025. Partnerne i prosjektet er UiT, Polarinstituttet, universitetet i Aarhus, GINR på Grønland, universitetet i Manitoba og universitetet i Calgary.

FISHCOMM skal finne ut om friske celler kan hjelpe skadde celler i fisk

Et nytt forskningsprosjekt skal finne nye reparasjonssystemer i fisken.

Hvert år dør ca. 20% av oppdrettsfisk av skader fra sykdommer eller av fysiske skader. Når vevet til fisken er skadet settes fiskens reparasjonssystemer i gang for å få det til å gro. Noe ødelagt vev blir fikset og noe dør. Forskerne i FISHCOMM skal finne ut om friske celler bidrar til å hjelpe syke og skadde celler. De tror at friske celler kan overføre bittesmå organeller og mitokondrier til de skadde. Mitokondrier er livsviktige energifabrikker i cellene. De gjør at cellene kan omdanne energi og leve. Forskerne skal finne ut hva som setter i gang at de friske cellene gir mitokondrier til de skadde og hvordan de gjør det. De tror at infeksjoner og nanoplast er noe av det som kan stresse cellene så de blir dysfunksjonelle. De tror også at da hjelper friske celler med nødhjelp, som å sende over mitokondrier.

To hudceller fra laks. Mitokondrier i den ene cellen er farget med lilla fargestoff, mens de i den andre er farget med turkis fargestoff. Forskerne i FISHCOMM har funnet celler med begge mitokondriefarger i en celle, noe som tyder på overføring av mitokondrier fra den ene cella til den andre. Foto: Svartaas, Kjølstad, Wolfson, Dalmo.

Kunnskapen fra prosjektet vil øke forståelsen av mekanismene som er med å reparere syke celler. Økt kunnskap vil også øke velferden for dyrene i havbruket på sikt.

Prosjektet har fått 12 millioner av Forskningsrådet og skal pågå ut 2024. Partnere i prosjektet er UiT, Shanxi Universitet og Westminster Universitet.

Different paths to immune protection in humans and fish

Written by Agata Teresa Wyrozemska, doctoral research fellow at Fish Immunology and Vaccinology.

The interaction between bacteria, viruses and the organisms they try to infect is a never-ending race. The human body can defend itself against most unwanted pathogens (harmful bacteria and viruses), using the resources of innate and adaptive immunity. Innate immunity is the first line of defence and includes physical barriers, such as the skin and mucosal membranes lining the digestive tract, respiratory tract, etc. Natural reflexes like sneezing, coughing, and vomiting support the clearing of pathogens. The complement proteins and acute-phase proteins are also involved. In addition, some cells send signals in form of, for example cytokines, which trigger the innate and adaptive immune processes. The adaptive immune response develops through direct contact with pathogens; its mechanisms are triggered after the innate immunity and take time to develop. Adaptive immunity involves various specialized cells and molecules, including Major Histocompatibility complexes (MCH). There are different types of MHC molecules but their general function is to help the immune system recognize foreign substances and distinguish them from the self.

Do fish have the same capacity to combat infection as humans?

Anglerfish female with attached male. Copyright © 2020 Swann et. al.

Fish are the most numerous and diverse group of vertebrates, with nearly 21,000 species, more than all other types of vertebrates combined. Would it be logical, if such a large and diverse group followed only one immune defence strategy? Probably no, as in many other aspects of biology, this one too does not follow a simple scheme. Let us focus on bony fish, which anglers and fish-enthusiasts shall be well acquainted with, like cod and salmon. To spice things up, we will throw anglerfish into the mix. Anglerfish males, as a part of reproductive strategy, bite into the female and fuse with her. They form an intricate type of transplant. What is even more interesting, many males can fuse with one female. These seams counterintuitive, because in human transplants, the tissue of the donor must be compatible with the tissue of the recipient or the immune system will reject it. Imagine having multiple organs transplanted from random people. How is it possible that the fused male body is not rejected? This is dictated by a loss of key capabilities that characterize classical adaptive immunity in jawed vertebrates in the Anglerfish (Swann et al., 2020).In a nutshell, their ability to recognizing self from non-self is impaired. On the other hand, there is cod, which has lost one type of the MHC molecules in course of evolution. One may speculate that this loss has been compensated by a massive expansion of the other type of MCH molecules. (Star et al., 2011)

The challenges of fish vaccines

Atlantic salmon. “File:Salmo salar-Atlantic Salmon-Atlanterhavsparken Norway.JPG” by Hans-Petter Fjeld is licensed under CC BY-SA 2.5

Anglerfish is a curiosity, and while cod is more commonly known, it is  salmon that is the most popular in Norway. It is well-liked and often lands on our plates. Because of the high demand for salmon fillets, the fish has to be farmed. Thousands of fish are kept in large nets in sheltered waters such as fjords or bays. In dense populations, diseases spread fast. As we see with the Covid-19 outbreak, the major measure to prevent the spread of the virus is social distancing. Social distancing in fish farms is not possible. The most common measure to prevent  diseases among farmed fish, which drive economic losses, is vaccination. Pathogens causing diseases in salmon have been thoroughly examined. Numerous vaccines are available, but there is still room for improvement. It is important to thoroughly examine and understand the salmonid immune systems to create more effective vaccines. Salmon shares many immune features with humans. For instance presence of specific cells, like white blood cells, and immunity-related internal organs. However, there are some differences in their structures and functions as well. Salmon, like other bony fishes, does not have bone marrow. Fish also rely more on the innate immunity. The adaptive response appears later in course of infection and is less sophisticated than in humans. These differences are interesting and important. We at the Fish Immunology and Vaccinology group have a focus on exploring salmon’s immune system and contribute to expand the general knowledge and the formulation of new vaccines. More information about the group can be found here.

Article “The genome sequence of Atlantic cod reveals a unique immune system” by Star et. al. 2011. 

Article “The immunogenetics of sexual parasitism” by Swann et. al. 2020.

MOSAiC: An inside look at the largest Arctic expedition in history

Written by postdoctoral fellow Jessie Gardner, AMB.

MOSAiC was the largest ever expedition to the Arctic, with one purpose: to improve our understanding of climate change.Dr Jessie Gardner, from the Department of Arctic and Marine Biology (UiT), was on board during the summer and shares her insights from this exceptional scientific campaign.

Unravelling the mysteries of the Central Arctic Ocean

In 2019 the German research icebreaker, Polarstern, set sail from Tromsø bound for the Central Arctic Ocean, the epicentre of climate change. Once there, the ship allowed itself to become trapped in the ice for a year, drifting alongside an ice floe with the speed and direction of the winds and currents alone. The idea follows that of the Norwegian researcher and explorer Fridtjof Nansen, who set sail on the first ever drift expedition with his wooden sailing ship Fram 127 years ago. The Polarstern was laden with state-of-the-art scientific equipment. Throughout the year, 442 experts from 70 institutions in 20 different countries took part in the field campaign, which was supported by six other ships, several aircraft and hundreds of others on land.

The Polarstern reached the northern Laptev Sea by mid-October 2019, located a suitable ice floe and set up a small floating city of scientific instruments in time for the polar night. With temperatures plummeting to -42°C and fierce winds transforming the ice around them, researchers battled to sample the floe in the darkness. Ultimately, they succeeded, giving us a rare glimpse into the central Arctic Ocean environment during the winter while the sea ice thickened beneath their feet.

The Russian icebreaker Kapitan Dranitsyn alongside the Polarstern during the wintertime in the central Arctic Ocean. Photo: Esther Horvath.

Research expeditions into the central Arctic Ocean have traditionally be fraught with problems and MOSAiC was no exception. Some of them were predictable and had been considered during the decade of planning, such as the Russian icebreaker Kapitan Dranitsyn being much delayed by the strength of the winter ice pack. Other issues were completely unforeseen, like the declaration of a pandemic around the world- just as the spring rotation of participants, crew and re-supplies was planned.

It was this rotation that I was scheduled to be part of part of “Team ECO” and the HAVOC project (Ridges – Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic Ocean). HAVOC is the largest Norwegian project to participate in MOSAiC, led by the Norwegian Polar Institute and funded by the Research Council of Norway. HAVOC aims to investigate sea ice ridges and their role in the Arctic sea-ice system. However, there were moments where it seemed like the MOSAiC field campaign might have been abandoned completely…

How to continue research during a global pandemic

The first hint of the seriousness of coronavirus came after I had attended a polar bear protection training course at the beginning of March in Germany. We were all tested for corona as a precaution, and one of the participants tested positive! I received the news while making a pit stop in the U.K. and immediately went into 2 weeks of quarantine. During those 2 weeks, coronavirus shifted from being a distant issue to a severe threat around the world. Straight after, countries went into lockdown, borders closed and plans for the Spring personnel exchange from Svalbard to the Polarstern were abandoned.

The MOSAiC coordinators, led by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), worked tirelessly to find an alternative despite airports, military facilities and seaports worldwide shutting down. First, we gained special permission to travel to Germany, underwent testing and then quarantined in isolation for two weeks. After I boarded the research vessel Maria S Merian and spent another two weeks sailing to Svalbard, sleeping in a modified container chained to her deck. The Polarstern had to leave the camp and floe temporarily for the personnel exchange. Unfortunately, this was at the cost of capturing the crucial time when the ice begins to melt, but this is a small price to pay compared to abandoning the expedition altogether.

I could hardly believe it when we finally reached the floe. Photos of sea ice from above makes it seem like a vast expanse of white, flat nothingness but actually this landscape is a diverse and beautiful- littered with tall ice blocks, jagged ridges, leads, cracks and melt ponds which change before your eyes. Now, we could finally get stuck into the science!

Home sweet home! Extra accommodation was needed on the Maria S Merian so many of us slept in converted containers chained to the deck. Photo: Jessie Gardner.

Going with the “floe”

Team ECO collected thousands of samples and measured a diverse suite of ecological and biogeochemical properties from snow, ice, and seawater. With the Polarstern as our base, we built onto the time series capturing the variability of the Arctic system. The dynamic nature of the Arctic and how fast the world around you can transform was something that really struck me. There were new cracks opening and closing throughout the floe, as well as melt ponds and streams forming and draining which we would have to jump over or wade through on the way to collect the samples. These events would be accompanied with a cascade of processes and pulses of life within the associated ecosystem. We were only able to capture these through intensive sampling bouts, working on the ice for 24 hours straight, powered by copious amounts of coffee and gummy bears.

You had to be constantly vigilant, since below us was thousands of meters of seawater, and a polar bear could emerge from the sea ice rubble any time! We were lucky during our time on the floe in that we experienced long periods of calm weather with perpetual bright sunshine. Occasionally there were some very foggy days where it was too unsafe to work on the ice due to poor visibility hindering polar bear guarding.

Team ECO during Leg 4 of MOSAiC. Left to right: Celia Gelfman, Allison Fong, Jessie Gardner, Giulia Castellani, Oliver Müller, John Paul Balmonte and Katyanne Shoemaker. Photo: Lianna Nixon.

Breaking boundaries: working together for a common goal

The name MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) reflects the complexity and diversity of the science during the expedition. The MOSAiC field campaign provided an unparalleled opportunity to simultaneously observe and measure the temporal evolution of a number of co-varying Arctic climate system variables from the central Arctic atmosphere, ocean, and ice. With this mindset I was amazed how much more we were able to achieve by working together. For example, it would have been impossible to have collected the number of samples for the HAVOC project that we managed, without others volunteering their precious free time to help. Working across these disciplines and breaking down the boundaries between traditional subjects will give new perspectives on the central Arctic, and it is here that ground-breaking discoveries could be made.

Participants from 70 institutions in 20 different countries took part in the field campaign where everyone worked towards a common goal. Photo: Jessie Gardner.

The expedition has ended, but the research is only just beginning

While the field campaign has ended, MOSAiC is by no means over. Samples are now being shipped to various institutions around the world to be analysed. These, alongside the suite of measurements taken by other teams will likely take the scientific community over a decade to analyse the data collected on MOSAiC. Through virtual meetings we have kept the cross-cutting discussions alive and we already have ideas of combining data and theories in unique and exciting ways. These data and observations will be fundamental to improve our understanding of climate change, and help inform pressing political decisions on climate protection.

On its return in October 2020 the Polarstern offloaded thousands of samples which are being shipped around the world for further analysis. Photo: Jessie Gardner.


Can oil and gas companies be a driver for a clean future? A case from petroleum industry

Written by PhDstudent Tahrir Jaber, REIS research group, Handelshøgskolen ved UiT.

Reflecting the call made by the United Nation to solve our current climate challenges and reduce our carbon emissions, there is a strong need for countries to improve their environmental standards. Norway was among the first countries who welcomed Paris Agreement and ensured its commitment to the UN’s 17 sustainable development goals. This made for significant changes regarding environmental policy, where renewable energy has been introduced as an alternative clean source of energy and is promoted as a climate change adaptation.


How has Equinor, a state-owned oil and gas company, adapted to meet the clean shift?

Equinor (formerly Statoil) is mostly owned by the Norwegian government who committed itself to a clean shift at all levels of society. This forced Statoil as an oil and gas company to reshape its strategy and invest heavily in clean energy activities to becoming a mixed-energy company. However, this shift is considered critical because the petroleum activities are crucial for the Norway’s economic growth and for funding the Norwegian welfare state. Also, investing in new clean activities requires Equinor to enhance its capabilities, knowledge and competences outside their boundaries.

Oil and gas companies in transition are required to include cultural and technological changes. Therefore, I found it interesting to understand why Equinor introduced new clean activities to the company and how people in Equinor accept and manage this clean shift. However, in order to answer those questions, I intended to collect my data through interviews and survey. This enabled me as a researcher to enrich the evidence and answer my questions more deeply.

The results show that Equinor’s owner (Norwegian state), top management team, board of directors and top leader play the most essential role in reshaping the company’s strategy in order to take a step towards a new clean shift. However, employees play an important role in strengthening this clean shift. This shows that employees understand the importance of the clean shift, accept it and are interested to develop new clean projects and introduce it to the management team.

Governments and policymakers play the most important role towards a sustainable future

This case shows us, first, the important role government plays in establishing environmental regulations that force companies to change and work to reduce their own carbon emissions. Second, it shed the light on the manager’s moral role in reshaping the company’s strategy by adopting new sustainable projects. Third, the Equinor case shows that its employees are invited to introduce any clean projects to the top management team. By this, employees will have a personal stake in the company and its success, create an opportunity for employees to share ideas, find that their contributions are valued and this enables them to contribute more.

To conclude, I believe that governments and policymakers play the most important role in achieving a sustainable future. Countries should commit to work towards reducing our emissions and have to take action in order to force companies and societies to achieve this goal. Therefore, it is extremely important for policymakers to establish new regulations and incentives that motivate companies to reduce their emissions and reward companies who intend to adopt clean activities.





Å kjenne lusa på gangen

– etablering av Senter for systembiologisk luseforskning (SSL)

Skrevet av førsteamanuensis Arve Lynghammar, seniorforsker Roy Dalmo og professor Kim Præbel ved Forskningsgruppe for genetikk, Norges fiskerihøgskole.

En av de største og dyreste problemene i norsk fiskeoppdrett er noen små, skallkledte dyr som går under samlebetegnelsen «lus». Den mest kjente er lakselus, men også søskenbarnet skottelus skaper problemer. Begge artene er hoppekrepser og har et reproduksjonstall (R-tall) mye høyere enn de mest pessimistiske anslagene Verdens helseorganisasjon (WHO) har hatt for korona. Hvert år bruker oppdrettsindustrien mer enn 5 milliarder kroner på å bekjempe problemet. Prisen per lus er jo ikke så stor, men samlet er dette en betydelig utgiftspost for næringen. Da er ikke problemene med dyrevelferd eller konsekvensene for villfisk og samfunn tatt med i regnestykket.

Lakselus Lepeophteirus salmonis (venstre) og skottelus Caligus elongatus (høyre), to arter hoppekreps som fører til store utfordringer for oppdrettsindustrien. Foto: Julie Bitz-Thorsen.

Kamper kjempes hver eneste dag

Til nå har strategien i hovedsak vært å fjerne symptomene, altså å fjerne lusa fra laksen. Men siden oppdrettslaksen og dermed lusa svømmer rundt i anlegg med bare et nett som barriere, vil lusa kunne spre seg fritt mellom miljø og merd. Kjemisk behandling brukes som enten badebehandling eller tilsatt i fôret. Begge deler påvirker miljøet rundt merdene. Det er ille nok, men kanskje enda verre; lusene tilpasser seg kjemikaliene og blir resistente (motstandsdyktige). Fysisk avlusning som høytrykksspyling, varmt vann eller ferskvann påvirker miljøet rundt i mindre grad. Men med fysisk avlusning øker utfordringene med fiskevelferden. Også dette har lusa et svar på. Den kan sette seg dypere ned mellom skjellene på laksen og blir vanskeligere å skylle bort. I tillegg kan den ganske raskt endre hvilke temperaturer og saltkonsentrasjoner den tåler.

Rensefisk (som leppefisk og rognkjeks) har lenge blitt sett på som den perfekte løsningen. Men rensefisken får selv velferdsutfordringer og kan skape trøbbel hvis den rømmer. I tillegg kan lusa gjøre seg mer gjennomsiktig som gjør at rensefisken ikke ser den. Gjennomsiktige lus kan muligens også gjøre seg usynlige for «Stingray-systemet» – en Star Wars-lignende sak som bruker laserstråler til å skyte lus. Lusa har altså en usedvanlig god evne til å unngå industriens forsøk på å få ned R-tallet. 

Oppdrettsanlegg i Nord-Norge, sommeren 2020. Om dette anlegget er plaget med lus vites ikke, men sannsynligheten for det er stor. Foto: Arve Lynghammar.

Noe må gjøres

Etter mange år og milliarder av kroner er de foreløpige konklusjonene lite lustig  lesning. Kanskje er behandling av symptomer, altså å fjerne lusa etter at den har slått seg ned på en uheldig laks, ikke er den beste løsningen. Det er nok på høy tid å mobilisere flere miljøer ved UiT, med mål om en mer helhetlig forståelse av luseproblemet. Med andre ord, vi må lære å kjenne lusa bedre på gangen.

Tålmodig laks i vente-merd ved slakteri i Nord-Norge. Foto: Kim Præbel

For å svare på utfordringene ønsker vi å etablere Senter for systembiologisk luseforskning (SSL) sammen med et bredt og relevant fagmiljø. Fra Norges fiskerihøgskole deltar forskningsgruppene Genetikk, Havbruk og miljø, Fiskeimmunologi og vaksineutvikling, MarBio, Sjømatvitenskap og Mikroalger. Fra Institutt for arktisk og marin biologi bidrar forskningsgruppene Ferskvannsøkologi og Nordlige populasjoner og økosystemer (og det er plass til flere). Havbruksstasjonen i Tromsø med sin luseinfeksjonsmodell er også sentral.

Senteret har tre hovedmål:

1. Hvilke lus er hvor?

I dag regnes lus som én genetisk enhet i Norge og Atlanterhavet som helhet. Det betyr at de blir forvaltet og behandlet som om de er like. Men erfaringene fra dagens avlusningsmetoder viser at lusene er svært gode på å tilpasse seg, og bare dette tyder på at grupper av lus kan utvikle seg ulikt. Nylig har man funnet ut at det til og med er klare forskjeller i genene hos lusene mellom merder på samme sted! Kunnskap om lusas genetiske sammensetning og evne til å være resistent mot en avlusningsmetode, vil gjøre det mulig å ha mer effektiv og målrettet behandling. Ett av målene for senteret er altså å kartlegge hva slags genetisk sammensetning lusepopulasjonene har, og hvor de ulike er langs kysten. Vi vil se på hvordan samspillet mellom lus på et sted foregår, i løpet av en produksjonssyklus. Hvordan akkumulerer lusa gener som gjør dem resistente mot behandling i tid og rom ?

2. Hvor kommer lusa fra?

Som sagt er oppdrettsfisk i hovedsak bare skilt fra resten av naturen med et nett. Lus forekommer også på villfisk, men det er lite kjent hvordan lusa beveger seg frem og tilbake mellom over nettet. Er det villfisk som smitter oppdrettsfisk mest eller er det omvendt? Og hvordan vil de resistente lusevariantene påvirke villfisk?

Bruk av rensefisk vil nok fortsette i årene fremover, og man avler frem varianter som er flinkere til å beite på lus. Lusa på sin side tilpasser seg rensefiskens økende evne til beiting, i et stadig pågående våpenkappløp. Hva vil skje dersom de fremavlede rensefiskene rømmer og sprer seg blant villfisk?

Ved å bruke metoder der vi ser på hele arvematerialet, vil vi prøve å få et innblikk i om rømt rensefisk blander seg med villfisk på stedet og hvordan resistente lus oppfører seg på villfisk. Vi tror at interaksjonen mellom vert og parasitt vil endres både i vill- og oppdrettsfisk.

Rognkjeks (Cyclopterus lumpus) blir brukt som rensefisk mot lus i nordnorsk lakseoppdrett. Foto: Kim Præbel.

3. Hvordan forhindre lusepåslag?

I innledningen slo vi fast at dagens avlusningsmetoder har utfordringer i tillegg til utvikling av resistens hos lusa. Derfor ønsker vi også å finne ut om det er måter å forhindre at lusa i det hele tatt slår seg ned på oppdrettsfisken. Bruk av algefôr produsert ved Finnfjord smelteverk har vist seg å være lovende. Vi ønsker i tillegg å teste tusenvis av ekstrakter fra Marbio for å se om disse kan holde lusa utenfor det gode selskap. Til sist vil vi med en bred genetisk tilnærming finne ut om ulike lusepopulasjoner kan være sykdomsbærere, i tillegg til de fysiske hudskadene som de forårsaker.

Nordnorsk oppdrettsanlegg for laks. Foto: Kim Præbel.

Stor slagkraft og relevans

Senter for systembiologisk luseforskning bidrar direkte til å støtte opp om UiTs satsing på bærekraftig havbruk og forskningsdrevet innovasjon. Vi tror at deltakerlisten blir utvidet med andre miljøer fra UiT, inkludert Det juridiske fakultet og Handelshøgskolen ved UiT. Oppdrettsnæringen og forvaltningsinstanser vil sannsynlig også bidra til en varig løsning for senteret. Vi ønsker å bruke vår store internasjonale kontaktflate til å fortsette arbeidet som det nå nedlagte «Sea Lice Research Centre» i Bergen gjorde, men med et fokus dreid mot interaksjonen mellom vert (laks) og parasitt (lus).

Næringen etterspør mer kunnskap om problematikken, for lus er rett og slett årsaken til at produksjonen ikke kan øke i årene fremover. Å bruke noen millioner på dette senteret fremstår som lusne penger sammenlignet med å kaste 5 milliarder ut vinduet hvert år.


Å ha et åpent sinn er viktig når vi forhandler i markeder som er kulturelt krevende

Skrevet av førsteamanuensis Gro Alteren, Handelshøgskolen ved UiT.

Regjeringen har begynt å utvikle planer for å styrke norske bedrifters posisjon i utenlandske markeder. Men planer er ikke nok for å lykkes; bedriften må ha forhandlingskompetanse for å få i havn gode avtaler. Hvert år taper norsk næringsliv store summer fordi de forhandler dårlig i markeder som er kulturelt krevende. Sjansene til å få i havn gode avtaler øker hvis bedriftene finner medarbeidere med et åpent sinn og evne til å tilpasse sin forhandlingsstil.

Åpent sinn og fleksibel forhandlingsstil skaper gode relasjoner. Foto: Lightfield/

Kultur uttrykkes i våre sosiale omgivelser. Som i hvordan samfunnet er organisert med institusjoner, økonomiske systemer og lovgivning. Det kommer også frem i hvordan vi omgås med hverandre og hvilke verdier og tro som er fremtredende. Kulturelle forskjeller mellom forretningspartnere skaper usikkerhet fordi partene har ulike strategier og ulike stiler i hvordan man kommuniserer. Det kan gjøre det vanskelig å forstå hverandres interesser og prioriteringer.

Hvis disse utfordringene ikke håndteres av kompetente personer, blir det vanskelig å få informasjon som er viktig for å oppnå gode avtaler. Å få til en god kommunikasjon hvor begge parter deler viktig informasjon er avgjørende for å øke felles forståelse. For å bygge tillit er det viktig at utveksling av informasjon kommer begge parter til gode. I mange land er tillit et viktig grunnlag for å gjøre forretninger med utenlandske bedrifter. Tillit mellom partene påvirker bedriftens økonomiske og strategiske mål i positiv retning. Tillit er også en forutsetning for å finne gode løsningene når det oppstår problemer.

Åpent sinn og fleksibel forhandlingsstil skaper gode relasjoner

Jeg har vært med å gjøre forskning i den eksporterende sjømatnæringen. Det vi fant ut var at ansatte som har et åpent sinn og en fleksibel forretnings- og forhandlingsstil lykkes bedre med å etablere gode relasjoner med kunder i forskjellige kulturer (som i for eksempel Russland, Kina og Japan). Å ha et åpent sinn betyr at personen stiller spørsmål til etablerte «sannheter» av situasjonen og kunden, og er åpen for ny informasjon. En person som er åpen vil fange opp ulike taktikker som forretningspartneren bruker.

Å ha et åpent sinn er viktig for å kunne gjøre tilpasninger av forhandlingsstil som passer til situasjonen. Da reduseres risikoen for å bli utnyttet av en utenlandsk partner. Med andre ord, en person som kan tilpasse sin forretnings- og forhandlingsstil til den kulturelle sammenhengen og partnerens forhandlingsstil kan påvirke kommunikasjonen på en god måte.

Det er dyrt å ansette feil person

Det er et konkurransefordel å lykkes med forretninger i markeder som er kulturelt forskjellig. En bedrift med erfaringer fra disse markedene får mer kompetanse og gjør det enklere å utvide i andre lignende markeder. Men det kan bli dyrt å ansette «feil» person til å ivareta kunder og forbindelser i markeder som har store kulturelle forskjeller fra Norge. For å lykkes krever det personer som er gode til å redusere usikkerhet og etablere relasjoner.

En som overser viktig informasjon og trekker feil konklusjoner risikerer å ende opp med en dårlig avtale. Å investere i trening av denne personens forhandlingsferdigheter vil nok gi liten gevinst.

Hvordan kan man velge riktig kandidat?

Personlige egenskaper som graden av et åpent sinn er ofte stabil og vanskelig å endre. Bedriftsledere bør derfor rekrutterer personer som har høy grad av et åpent sinn. De med et åpent sinn er klare til å utvikle ulike forhandlingsstrategier og opplæringen vil være mindre krevende.

For å finne en person med åpent sinn bør man bruke flere verktøy i utvelgelsesprosessen. Foto: Lightfield/

For å rekruttere riktig person må flere verktøy kombineres. Bedriften bør bruke intervju og spørreskjema for å avdekke «åpenheten». For eksempel holdningen til alternative tolkninger av en situasjon, holdning til ny erfaring og informasjon og evne til selvrefleksjon. Det bør også arrangeres rollespill som utfordrer kandidatens evne til å være fleksibel. Kandidaten må få teste seg i mer enn et rollespill, og gjerne med ulike team og motparter. Den utvalgte kandidaten må få oppfølging og veiledning av en kollega som har erfaring med å forhandle i kulturelt krevende markeder. Det kan skje ved at den nyrekrutterte blir en del av forhandlingsteamet, og blir med på forretningsbesøk. Da vil forhandlingskompetansen som allerede er i bedriften bli overført og videreutviklet av nye personer.

“En person som ignorerer viktig informasjon og trekker gale konklusjoner om kunden og markedet, risikerer å ende opp med en dårlig avtale”

Student Daniel finner molekyler i havdyr som kan bli nye medisiner

Skrevet av forsker Kine Østnes Hansen ved Marbio, Norges fiskerihøgskole.

I forskningsgruppa Marbio leter vi etter nye molekyler som kan utvikles til medisiner. Vi leter i planter, dyr og mikrober som lever i havet, fra kysten vår og opp til Nordpolen. Molekylene vi finner kan for eksempel brukes mot kreft og bakterier. Masterstudent i bioteknologi, Daniel Simonsen, er 24 år og kommer fra Vadsø. Han begynte i høst og skal være en del av vår forskningsgruppe i 10 måneder. Hos oss skal han finne og isolere molekyler fra et marint mosdyr, finne ut hvordan molekylene er bygd opp og teste hva de kan brukes til. Prøven Daniel skal jobbe med ble samlet inn fra havbunnen i Hinlopenstredet, som ligger mellom Spitsbergen og Nordaustlandet, i 2019.

I denne trålhaugen ligger flere kolonier av mosdyret som Daniel jobber med. Etter at (f.v.) Eivor, Renate, Gunilla og Gregg var ferdig med sorteringen, ble prøven sendt til Marbio for videre analyse.  Foto: Espen H. Hansen.

Vi mennesker har alltid brukt naturprodukter for å få bedre helse. Tannanalyser av neandertalerne viser at de tygde på bark, som vi nå vet inneholder salisylsyre. En variant av salisylsyre brukes fremdeles som smertestillende i medisinen Aspirin. Andre kjente eksempler på medisiner fra naturen er morfin og antibiotika. Faktisk har over 50% av alle medisiner opphav fra naturen. Felles for de fleste er at de kommer fra dyr, planter og bakterier som lever på land. Dette  er fordi livet på land  er mer tilgjengelig for oss mennesker sammenliknet de som lever i havet. Planter, dyr og mikrober som lever i havet har samme rike innhold av molekyler som livet på landjorda. Ny teknologi har gjort det mulig å samle inn flere marine arter, og vi begynner å få medisiner med opphav fra havet. Men havet er stort, og bare en brøkdel av livsformene som lever her har blitt undersøkt for innhold av molekyler som kan videreutvikles til medisiner. Havområder i Arktis, der vi i Marbio samler inn prøver, er lite undersøkt. Siden det er så stor del av dagens medisiner som stammer fra naturen er det ikke vanskelig å forstå hvorfor vi er motiverte til å lete etter nye medisiner der ingen har lett før.

Forskningsgruppen Marbio har i dag 15 ansatte og 3 masterstudenter. Professor Jeanette H. Andersen (fremst t.h.) er gruppeleder. De ansatte har bakgrunn fra bioteknologi, biokjemi, mykologi, farmasi, virologi og molekylærbiologi. Vi har arbeidssted i Siva innovasjonssenter Tromsø. Vi har en variert arbeidsdag og mange spennende prosjekter på gang. Marbio er en flott plass å jobbe!

Det er flere grunner til at Daniel skal lete i mosdyr etter molekyler som kan videreutvikles til medisiner. Mosdyr er invertebrater (virvelløse dyr). Det betyr blant annet at de ikke har like bra immunsystem som oss mennesker. De fleste mosdyrene sitter fast på en plass på havbunnen, hvor de får næring ved å filtrere sjøvann. Det gjør at de er sårbare for angrep fra rovdyr og bakterier, eller kan bli overgrodd av andre arter. For å overleve produserer flere av invertebratene molekyler som er giftige for artene som truer dem, som en måte å beskytte seg. Molekylene er blitt bedre og bedre gjennom evolusjon: dyrene som lagde molekyler som ga best beskyttelse, overlevde. Det er denne molekyltypen Daniel ønsker å finne. Marbio har lang erfaring med å analysere biomasse fra invertebrater. Tidligere har vi blant annet funnet molekyler som fungerer mot brystkreftceller i et nesledyr (Thuiaria breitfussi) fra havet utenfor Bjørnøya (1). Flere masterstudenter har også gjort liknende arbeid som det Daniel gjør nå (2). Vi leter også etter aktive molekyler fra marine bakterier og sopp.

Marbio deler kontorlandskap med Marbank, den nasjonale marine biobanken. Her studerer Daniel det rike utvalget av prøver vi har tilgang til.

Daniel startet arbeidet med kjemisk analyse av et ekstrakt fra mosdyr. I ekstraktet fant han det vi tror er et kjent molekyl og fire som vi tror er nye. Etter å ha funnet disse begynte den tidskrevende oppgaven med å isolere forbindelsene. For å gjøre dette brukte Daniel avansert kjemisk utstyr som kan trekke ut enkeltmolekyler fra ekstraktet. I metoden, der vi bruker noe som heter en HPLC-kolonne, sorteres molekylene etter hvor fettløselige og vannløselige de er. Det gjør at vi får rene forbindelser som vi kan analysere videre.   Etter flere måneder på kjemilaben er flere av prøvene til Daniel isolerte og klare til at vi skal finne ut hvordan de er satt sammen.

Daniel jobber med kjemisk isolering av fire antatt nye og et kjent molekyl fra mosdyrekstraktet.

Daniel skal finne ut hvordan molekylene er bygget opp med en kjemisk teknikk som heter NMR spektroskopi. Det skal han gjøre sammen med forskeren Johan Isaksson ved institutt for kjemi, UiT.

Utvalgte NMR spekter fra den tidligere kjente forbindelsen i Daniel sin mosdyrprøve. Spektrene forteller oss egenskapene til proton og karbonatomene i prøven, og hvordan disse atomtypene er plassert i forhold til hverandre.

Nå på våren skal Daniel teste om molekylene han  har funnet kan brukes mot blant annet kreftceller, bakterier, sopp og mot bakteriell biofilm. Kort forklart testes stoffene i ulike konsentrasjoner mot de forskjellige målene. Både for å se om de er «aktive» (om de fungerer) og for å finne ut hvor kraftig aktiviteten er. Medisiner må virke kun på det de skal treffe i kroppen vår. Dette er for at medisinen skal virke godt nok og ikke gi for mange bivirkninger. Det beste i en slik første testrunde er at stoffene viser aktivitet i en av testene. Hvis et stoff for eksempel viser aktivitet mot en kreftcelletype betyr det at stoffet kan videreutvikles til en målrettet kreftmedisin. Det betyr en medisin som bare virker på syke celler og ikke ødelegger friske celler i kroppen. Tidligere har Marbio funnet molekyler som virker bare mot brystkreftceller (1). Når vi testet disse stoffene så vi at brystkreftcellene døde, mens andre celletyper ikke ble påvirket. Vi jobber nå med å forstå hvilke prosesser inne kreftcellene molekylet «angriper». I tillegg jobber vi i Marbio med flere stoffer vi har oppdaget. Blant annet jobber vi med stoffer mot blodkreftceller og som forhindrer at insulinproduserende celler hos pasienter med diabetes type I dør.

Dette er de første resultatene som viste oss at vi hadde funnet marine molekyler som virket mot brystkreftceller. I de lilla brønnene er det levende celler, i de gule brønnene er cellene døde. Et av molekylene er her testet i en konsentrasjonsserie mot brystkreftceller, hudkreftceller og normale lungeceller. Vi så en målrettet effekt mot brystkreftcellene og at stoffet var aktivt ved lave konsentrasjoner. Hudkreftcellene og lungecellene ble ikke påvirket av stoffet.

Hva vi skal gjøre videre med molekylene Daniel har funnet vil de første testrundene vise oss. Hvis stoffene er aktive mot kreftceller kan vi gjøre oppfølgingsstudier for å få en forståelse av hvordan kreftcellene dør. Dette kan inkludere ulike stadier av cellesyklusen, om molekylene påvirker signalene imellom cellene eller om cellene dreper seg selv (dette kalles apoptose). Daniel sin masteroppgave vil være tilgjengelig i Munin i slutten av mai 2021.

(1) Molekyl fra havet dreper brystkreftceller.

Kjerringa mot strømmen; historien om mRNA baserte Covid-19 vaksiner og hvordan en ungarsk kvinnelig biokjemiker nektet å gi opp

Skrevet av professor Jorunn Jørgensen, Norges fiskerihøgskole.

Karikó sitt pionerarbeid har lagt grunnlaget for to av de ledende Covid-19 vaksinene verden har tatt i bruk. Foto: BOHEMAMA/

Før korona var det få som visste hvem Katalin Karikó var. Nå er hun en het kandidat til årets nobelpris i kjemi for sin forskning på mRNA. Karikó sitt pionerarbeid har lagt grunnlaget for to av de ledende Covid-19 vaksinene verden har tatt i bruk. Arbeidet startet ved Universitet Szegved i Ungarn tidlig på 80- tallet. Her lot den unge Karikó seg fascinere av mRNA, budbringeren, som instruerer cellene om hvilke proteiner de skal lage. Hun så muligheter i mRNA; kunne dette være oppskriften på hvordan kroppen vår kunne bli sin egen medisin-fabrikk, for eksempel mot virus?  Dr. Katlin Karikó, som nå er 66 år, har opplevd mange skuffelser, avslag og steile motbakker. Men i dag kan hun rangeres som en av verdens mest betydningsfulle forskere.  

I Norge er Covid-19 vaksineringen i full gang. De første vaksinene som kom til landet i januar var fra selskapene Pfizer/BioNtech og Moderna. Begge disse er syntetiske mRNA-vaksiner, en helt ny vaksineteknologi, som ikke har vært i bruk før. Mange har latt seg imponere over hvordan man på rekordtid har klart å utvikle helt nye vaksinekonsepter og produsere millionvis av doser.  Det å få dette til så raskt har ikke vært mulig uten mange, mange tiår med grunnforskning. En av pionerne var Katlin Karikó.

Karikó, datter av en slakter, utdannet seg til biokjemiker på 80-tallet ved Universitetet Szeged i Ungarn. Det var også her hun startet sin forskning på mRNA.  Hun ble tidlig overbevist om at mRNA (mRNA forteller cellene i kroppen hvordan de skal lage proteiner) også kunne brukes til å kurere sykdom. Det biologiske forskningssenteret i Szeged hadde knappe ressurser og manglet teknologien Karikó trengte for å få framgang i forskningen sin. Hun bestemte seg derfor for å forlate heimlandet sitt og fikk i 1985 jobb ved Temple University i Philadelphia. Historien forteller at hun solgte sin brukte Lada, vekslet pengene inn i 1200 dollar på svartebørsen og sydde de inn i teddybjørnen til sin 2-årige datter. Slik fikk hun pengene med seg på flyet til USA.

Katlin Karikó. Foto: Krdobyns/

Den amerikanske drømmen ble ikke lett for Karikó

I den tidlige fasen av RNA-forskningen fantes metoder for å isolere mRNA fra celler, men man kunne ikke lage store mengder i laboratoriet. På 90-tallet kom metoden for å få dette til; enzymet RNA-polymerase gjorde det mulig å lage mRNA fra DNA ved PCR-metoden. Karikó fikk ta del i denne RNA-boomen, men hennes ide om å bruke mRNA som medisin fikk tilbakeslag. Når forskerne injiserte mRNA i mus fikk musene så sterke immunreaksjoner at de døde. Karikó var da ansatt ved University of Pennsylvania (Upenn) og hadde en opprykkstilling for et professorat der. Hun mente at det burde finnes løsninger på problemet med immunreaksjonene til musene. Men hennes søknader om penger til RNA-forskning fikk avslag på avslag og feltet var lagt dødt. I 1995 fikk hun en klar beskjed fra Upenn; uten finansiering måtte forskningen hennes legges ned og hun ble degradert. Ikke nok med det, på samme tid ble hun diagnostisert med kreft.

Et tilfeldig møte ved en kopimaskin skulle forandre alt

Drew Weissmann, en anerkjent professor i immunologi, var nyansatt ved Upenn og traff Karikó ved kopimaskinen. De kom i prat og Karikó fortalte om forskningen sin og om musene som døde av betennelser, slik at finansieringen til hennes forskning var stanset. Drew selv jobbet med en vaksine mot HIV og inviterte Karikó inn i laben sin. Partnerskapet mellom disse forskerne gjorde at de stilte spørsmålet, hva er det i mRNAet som utløser den sterke immunresponsen? Løsningen fant de; De kunne erstatte en av byggesteinene i mRNAet med en endret utgave slik at musene kunne overleve. Studiet ble publisert i 2005 og oppfinnelsen ble patentert av Upenn. Veien lå nå åpen for en RNA-vaksine, men ingen var interesserte. Eller nesten ingen. Derrick Rosso, en post doc ved Stanford, leste artikkelen til Karikó og Weissmann og ble interessert. I 2010 grunnla han, sammen med en gruppe professorer fra Harvard, bioteknologifirmaet Moderna. Målet var å bruke modifisert RNA til å utvikle vaksiner og legemidler. I dag leverer Moderna Covid-19 vaksiner til hele verden og selskapets er verdsatt til 72 milliarder dollar. Et par år tidligere, i Mains i Tyskland, ble et annet selskap, BioNTech, stiftet. Grunnleggerne, tyrkiskfødte Ugur Sachin og hans kone Ozlem Tureci, hadde som mål å bruke mRNA innen kreftbehandling. Etter hvert så de at det også kunne brukes for å lage vaksiner mot pandemier. Så kom Covid-19 og ideen ble virkelig. I dag har Phizer/BioNtech 1800 ansatte og selskapet er verdsatt til 28 milliarder dollar.

Karikó, sto ved sin overbevisning

Karikó og Weissman utviklet en teknologi som gjorde vaksinene til Moderna og Pfizer/BioNtech unike: mRNAet ble pakket inn i en fettkapsel som gjorde at det ikke blir ødelagt ved injisering i kroppen. Upenn solgte patentet til Karikó og Weismann på et tidlig stadium. Karikó tjente bare et par millioner dollar for sitt patent, mens selskapene som produserer vaksinen tjener milliarder av dollar. Karikó søkte på nytt om opprykk til et professorat ved Upenn i 2013, men heller ikke denne gangen ble hun vurdert til å være kvalifisert. En som derimot så Karikó ´s kvaliteter var Ugur Sachin som ansatte henne som senior vice president i BioNTech i Tyskland. I intervjuer har Karikó uttalt at ordentlige vitenskapsfolk gir seg aldri. Vi er som rockemusikere, så lenge de kan spille er de lykkelige. Nobelpris komiteen har i alle fall en glimrende kvinnelig kandidat i år.


Vil du lese mer?:

How mRNA went from a scientific backwater to a pandemic crusher

Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA

Dette inneholder covid-19 vaksinen

Genbaserte vaksiner mot covid-19



Smågnageren er viktigere enn du tror

Skrevet av Eeva Marjatta Soininen, forskningsgruppen Northern Populations and Ecosystems

Smågnagerne er kanskje ikke de mest synlige dyrene når man går på tundraen i Nord-Norge. Men de sykliske svingningene i smågnagernes bestandstetthet utgjør pulsen i hele næringsnettet på tundraen. Smågnagerne er nemlig både viktige byttedyr og spiser mye planter. Så selv om vi ikke ser dem så ofte, så former de mye av plante- og dyrelivet rundt oss.

Norsk lemen er et spesielt viktig byttedyr for fjellrev og snøugle. Yngling av disse rovdyrartene på Varangerhalvøya er avhengig av at de har tilgang på lemen som mat (foto: Rolf. A Ims)

Alle rovdyrene på tundraen spiser smågnagere. Enkelte rovdyr, slik som fjellrev og snøugle, er spesielt avhengige av lemen. De yngler bare når det er toppår for gnagere. Andre rovdyr med mer generalisert diett, slik som rødrev og kråkefugler, yngler også mer i toppår med smågnagere. Dette systemet gjør at toppår for gnagere gir økning i bestandstettheten hos rovdyr. Det igjen gir negative ringvirkninger for andre byttedyrarter, som for eksempel rypa.

Smågnagerne har også betydning for plantelivet. I toppårene spiser smågnagerne til sammen store mengder planter. Det påvirker både plantesamfunnets biomasse og artssammensetning. Vi kan godt si at smågnagere vedlikeholder sine habitat. Både mose og dvergbusker på heiene hadde sett nokså annerledes ut uten gnagertopper.

Hva gjør klimaendringene med dette systemet?

Vi forventer varmere og våtere vintre som følge av klimaendringene. Mildværsperioder med regn om vinteren fører til at snøen smelter og fryser flere ganger. Dermed dannes islag i snødekket. Islag begrenser spesielt gnagernes tilgang til mat under snøen. Dette vil igjen kunne resultere i færre og sjeldnere gangertoppår. Så hva skjer med gnagerne når klimaet forandrer seg? Og hvordan påvirker forandringer i gnagersykluser resten av økosystemet?

Kameraene er plassert i metallkasser som har hull i begge ender. På denne måten er kameraboksen integrert som en del av gnagernes naturlige habitat. Kameraet sitter i taket og ser nedover, og tar bilde av alle dyr som passerer under (foto: Mike Murphy)

For å svare på disse spørsmålene, har vi utviklet et system for kameraovervåking av smågnagere. Arbeidet gjøres i regi av prosjektet Klimaøkologisk Observasjonssystem for Arktisk Tundra (COAT). I prosjektet har vi en egen forskningsmodul med fokus på gnagere.

Vi antar at klimaforandringene hovedsakelig påvirker gnagere via endringer i vinterklimaet. Det gjør det spesielt viktig å forstå hva som skjer under snøen. Nye typer viltkamera gjør det mulig å overvåke både røyskatt og snømus året rundt – også under snøen. Kameraene tar bilder av gnagere og rovdyr som er spesialisert på å spise dem.

Røyskatt med lemenbytte

Bildene gir oss mulighet til å observere dynamikken mellom rovdyr og gnagere, for eksempel å skille nedgang i gnagerbestand som skyldes predasjon fra nedgang som skyldes vanskelige snøforhold. I tillegg registrerer kameraene temperatur, som brukes til å beregne når gnagerne har vært under snøen.

Informasjon om snøforholdene brukes for å modellere effekten av snø på populasjonsdynamikk av gnagere.

Informasjon om smågnagernes bestandstetthet er viktig for en optimal forvaltning av utrydningstruede dyr, som for eksempel fjellreven. Smågnager-syklusene har en indirekte effekt på småvilt, som rypa. Informasjon om smågnagere kan hjelpe å forutsi småviltbestandens utvikling og dermed forvaltningen av småvilt.

Parallelt med utsetting av kamera og innsamling av bilder, har vi også jobbet med automatisering, optimalisering og modellering av bildene. Noen av bildene kan du se her.

I noen lokaliteter er det flere dyr som ofte kommer innom kamera. Her en røyskattfamilie, der tre ungdyr gjentatte ganger var på bildene.