The Barents Sea Polar Front Study 2021 – student immersion into cutting edge science

Written by Professor Rolf Gradinger, Department of Arctic and marine biology.

Barents Sea ecosystems supports one of the most economically valuable fisheries on Earth. But the high latitudes are changing drastically with the climate changes. It is uncertain if and how the future Barents Sea will function in the future. Will food web interactions change and current species disappear and be replaced by other taxa? This challenging question is the major focus of the Norwegian Arven etter Nansen project supported by other ongoing research.

In May 2021, the research and education network ARCTOS teamed up with Arven etter Nansen to investigate the biology in the dynamic frontal zone between Arctic and North Atlantic water masses in the so-called Polar Front region east of Svalbard. During the 11-day long expedition onboard Helmer Hansen (a UiT research vessel), we did not only conduct cutting edge research but also provided a framework for education of early career scientists as part of the UiT course BIO-8510.

Study area and station map of the ARCTOS-AeN Polar Front study (ARCTOS).

The expedition crossed the Polar Front twice and collected samples. We wanted to explore and understand the distribution patterns and activity of plankton, fish, seafloor living creatures, marine mammals, and relate these patterns and their activities to how this frontal zone was structured. Was it just a boundary, separating Arctic from Atlantic domains and species? Or does it have unique dynamics leading to e.g., enhanced food availabilities to sea birds and marine mammals creating an oasis in the desert?

In addition to the use of traditional sampling devices , we used innovative new tools. These new tools were two gliders and two sailbuoys (sponsored by Equinor) and fast repetition rate fluorometers. They provide insights into both the small-scale distributions and physiology and broad-scale distributions of marine organisms which is not possible to be assessed with normal ship-board instruments. Sea ice limited our ability to trawl and use gliders in the northern part of the Polar Front, but provided us with a short insight into the life of two polar bears. The crew of Helmer Hanssen provided us with outstanding support to our many wishes, not minding the frequent adjustments of the scientific program.

Our first results show that we sampled a well-developed frontal system with clear separation of Arctic and Atlantic water, combined different community patterns on all trophic levels. We also encountered an exceptionally strong microalgal spring bloom, dominated by millions of diatom microalgae in the water column. Further conclusions must wait now for the data analyses which are currently conducted and will be summarized at the upcoming AeN annual meeting, and a dedicated Polar Front workshop end of this year.

Examples of microalgal species encountered during the expedition (R. Gradinger).

The PhD level teaching component (BIO-8510), organized through ARCTOS and UiT, attracted 15 early career scientists from Norwegian, UK and US universities. They had widely ranging interests, from remote sensing, ocean physics to marine mammal acoustics. All students participated in research programs, whether it was algal activity measurements or the study of benthic macrofauna. Participating senior researchers came from Akvaplan-niva, NINA, and UiT. This experience provided the students with a unique training in Arctic Systems Science, a holistic view looking at interconnections between different components of the living and non-living parts of the Barents Sea. Without the excellent student engagement, their energy and commitment, this expedition would not have been able to achieve the broad scientific success that we had. Although the course has officially ended, the participating students have been invited to be involved in future sample analyses, data processing and manuscript writing.

Students analysing zooplankton samples (R. Gradinger).

The cruise participant nationalities included Brazil, Canada, China, Cyprus, Denmark, France, Finland, Germany, Iran, Norway, Pakistan, Philippines, Switzerland, UK, and USA. The combination of home institutions and diversity of nationalities allowed all participants to further build their networks of scientific connections and culture experiences – both important attributes for successful career and personal growth.

Celebrating May 17, 2021 onboard Helmer Hanssen (ARCTOS).

To make reasonable predictions is a task given rightfully to us scientists from the public. Such predictions can only be as good as the data that are used to develop them. Only field-going research like this AeN and ARCTOS partnership can solve the puzzle how the future Barents Sea will work, and if it will continue to sustain one of the most economically important fisheries on Earth. Therefore, information from our cruise is critical as the Barents Sea is a sea in change, driven by multiple human stressors. This research will continue as we in an ARCTOS consortium were just awarded funding from the Norwegian Research Council (in cooperation with Equinor and Conoco Philips) to continue our Polar Front research through further seasonal research cruises and extended science missions with May 2022 as next targeted time window, again together with BIO-8510.

Further reading:

En reise til det kjente ukjente.

Livet på havbunnen.

Fyrstehandserfaring om bord FF Helmer Hanssen.

Der det varme Atlanterhavsvannet møter Arktisk kulde.

ARCTOS-Nansen Legacy Polar Front cruise.

Where the Atlantic heat meets the Arctic Cold.

Departure into the known unknown.

First experience onboard the RV “Helmer Hanssen”.

Life at the seabed: studying bottom-dwelling fish and invertebrates across the polar front.

Uncovering the hidden link in glacier melting

Written by Euan Paterson, Communications and Media Officer at The Scottish Association for Marine Science. First published here.

The team will examine fresh water flow from the Kronebreen glacier. Photo: SAMS.

Marine scientists will today (Friday) deploy robotic vehicles on a dangerous mission to the face of a glacier in Svalbard as they attempt to expose the hidden link in how rapidly melting Arctic ice is changing our ocean.

The mission to Ny Ålesund, the world’s most northerly settlement, is a collaboration between the Scottish Association for Marine Science (SAMS), UiT The Arctic University of Norway, the Norwegian Polar Institute and University Centre on Svalbard. The team will examine the Kronebreen glacier in Kongsfjorden, measuring the freshwater run-off as it melts, and assessing how it interacts with the saltier sea water coming into the fjord from the North Atlantic.

Humans are unable to sample at the glacier face because of the risk of huge chunks of ice collapsing into the sea below, a process known as glacier calving.

Instead, the team will use an autonomous surface vehicle (ASV) built by Norwegian company Maritime Robotics, to record various oceanographic measurements at the face of the glacier, while an autonomous underwater vehicle, known as an ecoSUB, will take temperature, salinity and oxygen readings below the surface. Meanwhile, aerial drones will survey the so-called freshwater ‘plumes’ that run off from the glacier.

Lead scientist Prof Finlo Cottier of SAMS said: “Fjords are the connection between the changing ocean and our rapidly melting northern glaciers. The transfer of heat and water at these points, often just a few kilometres wide, are therefore extremely important in understanding how climate change is impacting our ocean.

“However, as these areas are too dangerous to survey fully and too small to be picked up on global ocean models, the interactions between fjords and glaciers have not been sufficiently represented in ocean and climate predictions.

“We need to know much more about the fresh water coming into the ocean: How much is there? Where does it end up? How does it move?

“It would simply be too dangerous to go into such a hostile and remote environment with a boat. Not only is there a risk of falling ice, but large-scale calving causes huge waves, so it is a dangerous place. That is where the robotic systems come into their own, working at the front line of Arctic science.”

While rising global temperatures increase glacial melt, glaciers are also breaking up below the surface of the water. In a process known as sub-glacial discharge, melt water flows down through the glacier and out into the ocean. This water is fresher than the surrounding sea water, so starts to rise in the water column, creating a plume that pulls in warmer Atlantic water which increases the melt rate at the face of the glacier. This process undermines the wall of ice, causing huge chunks to collapse into the sea.

The marine robotics deployed by the team will collect crucial data to improve our understanding of this process.

Dr. Emily Venables will pilot the ASV during the mission. Photo: UiT The Arctic University of Norway

The project is funded through the Norwegian research centre, The Fram Centre, under the Coasts and Fjords flagship programme.

BREATHE skal finne ut hvordan det vil gå med havisalgene i fremtiden

Et nytt prosjekt, BREATHE, skal forske på havisalger i Arktis. Havisalgene er viktige i det marine miljøet. Men vi vet for lite om hvordan de lever i isen og hvordan de påvirkes av klimaendringene. Da er det vanskelig å spå hva som vil skje med dem og de som er avhengige av dem. BREATHE vil forske sånn at vi får bedre modeller for hva som vil skje med havisalgene i fremtiden.

Havisalger lever i isen i de polare områdene. Foto: Karley Campbell

Havisalger er alger som lever i isen rundt polene. De er en viktig del av næringskjeden fordi de er mange og fordi de har fotosyntese. Fotosyntese får dem til å fange CO2 og bruke den til å lage oksygen og mat til andre, det kalles primærproduksjon. Havisalger slipper også ut CO2 og bruker O2 gjennom det som heter respirasjon. Reparasjonsprosessen i algene vet vi ikke noe om enda. Primærproduksjonen og respirasjon går opp eller ned med variasjoner i lys og næring. Det betyr at gassene og maten som algene gir til miljøet endrer områdene der de lever. BREATHE-prosjektet vil finne ut hvordan. Endringene i hva algene gjør og tilgang til næring er ikke godt representert i modeller som kan brukes til å forutsi fremtiden for havisalger. BREATHE vil lage bedre modeller for å forutsi hva som skjer med havisen. De bedre modellene vil ta med algenes tilgang til næring og respirasjonsprosessen. I fremtiden kan vi bedre vite hva som skjer med havisenes alger, gassene de produserer og helsen til polare marine miljøer når det er endringer i klima og miljø.

En havisalge. Foto: Karley Campbell

Prosjektet har fått 8 millioner kroner fra Forskningsrådet og vil pågå frem til 2025. Partnerne i prosjektet er UiT, Polarinstituttet, universitetet i Aarhus, GINR på Grønland, universitetet i Manitoba og universitetet i Calgary.

MOSAiC: An inside look at the largest Arctic expedition in history

Written by postdoctoral fellow Jessie Gardner, AMB.

MOSAiC was the largest ever expedition to the Arctic, with one purpose: to improve our understanding of climate change.Dr Jessie Gardner, from the Department of Arctic and Marine Biology (UiT), was on board during the summer and shares her insights from this exceptional scientific campaign.

Unravelling the mysteries of the Central Arctic Ocean

In 2019 the German research icebreaker, Polarstern, set sail from Tromsø bound for the Central Arctic Ocean, the epicentre of climate change. Once there, the ship allowed itself to become trapped in the ice for a year, drifting alongside an ice floe with the speed and direction of the winds and currents alone. The idea follows that of the Norwegian researcher and explorer Fridtjof Nansen, who set sail on the first ever drift expedition with his wooden sailing ship Fram 127 years ago. The Polarstern was laden with state-of-the-art scientific equipment. Throughout the year, 442 experts from 70 institutions in 20 different countries took part in the field campaign, which was supported by six other ships, several aircraft and hundreds of others on land.

The Polarstern reached the northern Laptev Sea by mid-October 2019, located a suitable ice floe and set up a small floating city of scientific instruments in time for the polar night. With temperatures plummeting to -42°C and fierce winds transforming the ice around them, researchers battled to sample the floe in the darkness. Ultimately, they succeeded, giving us a rare glimpse into the central Arctic Ocean environment during the winter while the sea ice thickened beneath their feet.

The Russian icebreaker Kapitan Dranitsyn alongside the Polarstern during the wintertime in the central Arctic Ocean. Photo: Esther Horvath.

Research expeditions into the central Arctic Ocean have traditionally be fraught with problems and MOSAiC was no exception. Some of them were predictable and had been considered during the decade of planning, such as the Russian icebreaker Kapitan Dranitsyn being much delayed by the strength of the winter ice pack. Other issues were completely unforeseen, like the declaration of a pandemic around the world- just as the spring rotation of participants, crew and re-supplies was planned.

It was this rotation that I was scheduled to be part of part of “Team ECO” and the HAVOC project (Ridges – Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic Ocean). HAVOC is the largest Norwegian project to participate in MOSAiC, led by the Norwegian Polar Institute and funded by the Research Council of Norway. HAVOC aims to investigate sea ice ridges and their role in the Arctic sea-ice system. However, there were moments where it seemed like the MOSAiC field campaign might have been abandoned completely…

How to continue research during a global pandemic

The first hint of the seriousness of coronavirus came after I had attended a polar bear protection training course at the beginning of March in Germany. We were all tested for corona as a precaution, and one of the participants tested positive! I received the news while making a pit stop in the U.K. and immediately went into 2 weeks of quarantine. During those 2 weeks, coronavirus shifted from being a distant issue to a severe threat around the world. Straight after, countries went into lockdown, borders closed and plans for the Spring personnel exchange from Svalbard to the Polarstern were abandoned.

The MOSAiC coordinators, led by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), worked tirelessly to find an alternative despite airports, military facilities and seaports worldwide shutting down. First, we gained special permission to travel to Germany, underwent testing and then quarantined in isolation for two weeks. After I boarded the research vessel Maria S Merian and spent another two weeks sailing to Svalbard, sleeping in a modified container chained to her deck. The Polarstern had to leave the camp and floe temporarily for the personnel exchange. Unfortunately, this was at the cost of capturing the crucial time when the ice begins to melt, but this is a small price to pay compared to abandoning the expedition altogether.

I could hardly believe it when we finally reached the floe. Photos of sea ice from above makes it seem like a vast expanse of white, flat nothingness but actually this landscape is a diverse and beautiful- littered with tall ice blocks, jagged ridges, leads, cracks and melt ponds which change before your eyes. Now, we could finally get stuck into the science!

Home sweet home! Extra accommodation was needed on the Maria S Merian so many of us slept in converted containers chained to the deck. Photo: Jessie Gardner.

Going with the “floe”

Team ECO collected thousands of samples and measured a diverse suite of ecological and biogeochemical properties from snow, ice, and seawater. With the Polarstern as our base, we built onto the time series capturing the variability of the Arctic system. The dynamic nature of the Arctic and how fast the world around you can transform was something that really struck me. There were new cracks opening and closing throughout the floe, as well as melt ponds and streams forming and draining which we would have to jump over or wade through on the way to collect the samples. These events would be accompanied with a cascade of processes and pulses of life within the associated ecosystem. We were only able to capture these through intensive sampling bouts, working on the ice for 24 hours straight, powered by copious amounts of coffee and gummy bears.

You had to be constantly vigilant, since below us was thousands of meters of seawater, and a polar bear could emerge from the sea ice rubble any time! We were lucky during our time on the floe in that we experienced long periods of calm weather with perpetual bright sunshine. Occasionally there were some very foggy days where it was too unsafe to work on the ice due to poor visibility hindering polar bear guarding.

Team ECO during Leg 4 of MOSAiC. Left to right: Celia Gelfman, Allison Fong, Jessie Gardner, Giulia Castellani, Oliver Müller, John Paul Balmonte and Katyanne Shoemaker. Photo: Lianna Nixon.

Breaking boundaries: working together for a common goal

The name MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) reflects the complexity and diversity of the science during the expedition. The MOSAiC field campaign provided an unparalleled opportunity to simultaneously observe and measure the temporal evolution of a number of co-varying Arctic climate system variables from the central Arctic atmosphere, ocean, and ice. With this mindset I was amazed how much more we were able to achieve by working together. For example, it would have been impossible to have collected the number of samples for the HAVOC project that we managed, without others volunteering their precious free time to help. Working across these disciplines and breaking down the boundaries between traditional subjects will give new perspectives on the central Arctic, and it is here that ground-breaking discoveries could be made.

Participants from 70 institutions in 20 different countries took part in the field campaign where everyone worked towards a common goal. Photo: Jessie Gardner.

The expedition has ended, but the research is only just beginning

While the field campaign has ended, MOSAiC is by no means over. Samples are now being shipped to various institutions around the world to be analysed. These, alongside the suite of measurements taken by other teams will likely take the scientific community over a decade to analyse the data collected on MOSAiC. Through virtual meetings we have kept the cross-cutting discussions alive and we already have ideas of combining data and theories in unique and exciting ways. These data and observations will be fundamental to improve our understanding of climate change, and help inform pressing political decisions on climate protection.

On its return in October 2020 the Polarstern offloaded thousands of samples which are being shipped around the world for further analysis. Photo: Jessie Gardner.

 

Priser til forskningsfilmen «Into the dark»

“Into the dark” vant to priser ved Columbia film festival. Foto: Michael O. Snyder

I januar 2018 ble fotograf og filmskaper Michael O. Snyder med Jørgen Berge og hans team på tokt i Arktis. Resultatet ble filmen «Into the dark». Nå har filmen vunnet to nye priser. Ved Columbia film festival vant «Into the dark» prisene for beste klipp og beste foto.

I “Into the dark” blir vi kjent med hvordan teamet forsker på om kunstig lys påvirker livet i havet under polarnatten. Polarnatten er den delen av året der det er natt hele døgnet, altså mørketid. Organismer som lever i Arktis har tilpasset seg de store sesongendringene i lysforhold, men det har vært uklart hvordan kunstig lys kan påvirke livene deres. Polarnattforskningen viser at arbeidslyset på forskningsskipet påvirker organismene i havet helt ned til 200 meters dyp. Det betyr at all tidligere forskning som ikke har tatt hensyn til dette kan ha feil data.

Into the dark hadde verdenspremiere på TIFF (Tromsø internasjonale filmfestival) i januar 2020 og har blitt vist på filmfestivaler rundt i verden. Tidligere pris filmen har vunnet er publikumsprisen på Around Film Festival Paris. Den var også semifinalist på Dumbo Film Festival. I tillegg har filmen ført til artikler i National Geographic, Oceanograpic, Scientific American og BBC.

Into the dark trailer

Bilder fra filmen

Michael O. Snyder sin webside

Forskningsartikkel om hvordan kunstig lys påvirker livet dypt ned i havet

Sak om polarnattforskningen på forskning.no

Sak om filmen på itromso.no

Om filmen på TIFF sine nettsider

Sak om filmen på UiT sine nettsider