The Barents Sea Polar Front Study 2021 – student immersion into cutting edge science

Written by Professor Rolf Gradinger, Department of Arctic and marine biology.

Barents Sea ecosystems supports one of the most economically valuable fisheries on Earth. But the high latitudes are changing drastically with the climate changes. It is uncertain if and how the future Barents Sea will function in the future. Will food web interactions change and current species disappear and be replaced by other taxa? This challenging question is the major focus of the Norwegian Arven etter Nansen project supported by other ongoing research.

In May 2021, the research and education network ARCTOS teamed up with Arven etter Nansen to investigate the biology in the dynamic frontal zone between Arctic and North Atlantic water masses in the so-called Polar Front region east of Svalbard. During the 11-day long expedition onboard Helmer Hansen (a UiT research vessel), we did not only conduct cutting edge research but also provided a framework for education of early career scientists as part of the UiT course BIO-8510.

Study area and station map of the ARCTOS-AeN Polar Front study (ARCTOS).

The expedition crossed the Polar Front twice and collected samples. We wanted to explore and understand the distribution patterns and activity of plankton, fish, seafloor living creatures, marine mammals, and relate these patterns and their activities to how this frontal zone was structured. Was it just a boundary, separating Arctic from Atlantic domains and species? Or does it have unique dynamics leading to e.g., enhanced food availabilities to sea birds and marine mammals creating an oasis in the desert?

In addition to the use of traditional sampling devices , we used innovative new tools. These new tools were two gliders and two sailbuoys (sponsored by Equinor) and fast repetition rate fluorometers. They provide insights into both the small-scale distributions and physiology and broad-scale distributions of marine organisms which is not possible to be assessed with normal ship-board instruments. Sea ice limited our ability to trawl and use gliders in the northern part of the Polar Front, but provided us with a short insight into the life of two polar bears. The crew of Helmer Hanssen provided us with outstanding support to our many wishes, not minding the frequent adjustments of the scientific program.

Our first results show that we sampled a well-developed frontal system with clear separation of Arctic and Atlantic water, combined different community patterns on all trophic levels. We also encountered an exceptionally strong microalgal spring bloom, dominated by millions of diatom microalgae in the water column. Further conclusions must wait now for the data analyses which are currently conducted and will be summarized at the upcoming AeN annual meeting, and a dedicated Polar Front workshop end of this year.

Examples of microalgal species encountered during the expedition (R. Gradinger).

The PhD level teaching component (BIO-8510), organized through ARCTOS and UiT, attracted 15 early career scientists from Norwegian, UK and US universities. They had widely ranging interests, from remote sensing, ocean physics to marine mammal acoustics. All students participated in research programs, whether it was algal activity measurements or the study of benthic macrofauna. Participating senior researchers came from Akvaplan-niva, NINA, and UiT. This experience provided the students with a unique training in Arctic Systems Science, a holistic view looking at interconnections between different components of the living and non-living parts of the Barents Sea. Without the excellent student engagement, their energy and commitment, this expedition would not have been able to achieve the broad scientific success that we had. Although the course has officially ended, the participating students have been invited to be involved in future sample analyses, data processing and manuscript writing.

Students analysing zooplankton samples (R. Gradinger).

The cruise participant nationalities included Brazil, Canada, China, Cyprus, Denmark, France, Finland, Germany, Iran, Norway, Pakistan, Philippines, Switzerland, UK, and USA. The combination of home institutions and diversity of nationalities allowed all participants to further build their networks of scientific connections and culture experiences – both important attributes for successful career and personal growth.

Celebrating May 17, 2021 onboard Helmer Hanssen (ARCTOS).

To make reasonable predictions is a task given rightfully to us scientists from the public. Such predictions can only be as good as the data that are used to develop them. Only field-going research like this AeN and ARCTOS partnership can solve the puzzle how the future Barents Sea will work, and if it will continue to sustain one of the most economically important fisheries on Earth. Therefore, information from our cruise is critical as the Barents Sea is a sea in change, driven by multiple human stressors. This research will continue as we in an ARCTOS consortium were just awarded funding from the Norwegian Research Council (in cooperation with Equinor and Conoco Philips) to continue our Polar Front research through further seasonal research cruises and extended science missions with May 2022 as next targeted time window, again together with BIO-8510.

Further reading:

En reise til det kjente ukjente.

Livet på havbunnen.

Fyrstehandserfaring om bord FF Helmer Hanssen.

Der det varme Atlanterhavsvannet møter Arktisk kulde.

ARCTOS-Nansen Legacy Polar Front cruise.

Where the Atlantic heat meets the Arctic Cold.

Departure into the known unknown.

First experience onboard the RV “Helmer Hanssen”.

Life at the seabed: studying bottom-dwelling fish and invertebrates across the polar front.

MOSAiC: An inside look at the largest Arctic expedition in history

Written by postdoctoral fellow Jessie Gardner, AMB.

MOSAiC was the largest ever expedition to the Arctic, with one purpose: to improve our understanding of climate change.Dr Jessie Gardner, from the Department of Arctic and Marine Biology (UiT), was on board during the summer and shares her insights from this exceptional scientific campaign.

Unravelling the mysteries of the Central Arctic Ocean

In 2019 the German research icebreaker, Polarstern, set sail from Tromsø bound for the Central Arctic Ocean, the epicentre of climate change. Once there, the ship allowed itself to become trapped in the ice for a year, drifting alongside an ice floe with the speed and direction of the winds and currents alone. The idea follows that of the Norwegian researcher and explorer Fridtjof Nansen, who set sail on the first ever drift expedition with his wooden sailing ship Fram 127 years ago. The Polarstern was laden with state-of-the-art scientific equipment. Throughout the year, 442 experts from 70 institutions in 20 different countries took part in the field campaign, which was supported by six other ships, several aircraft and hundreds of others on land.

The Polarstern reached the northern Laptev Sea by mid-October 2019, located a suitable ice floe and set up a small floating city of scientific instruments in time for the polar night. With temperatures plummeting to -42°C and fierce winds transforming the ice around them, researchers battled to sample the floe in the darkness. Ultimately, they succeeded, giving us a rare glimpse into the central Arctic Ocean environment during the winter while the sea ice thickened beneath their feet.

The Russian icebreaker Kapitan Dranitsyn alongside the Polarstern during the wintertime in the central Arctic Ocean. Photo: Esther Horvath.

Research expeditions into the central Arctic Ocean have traditionally be fraught with problems and MOSAiC was no exception. Some of them were predictable and had been considered during the decade of planning, such as the Russian icebreaker Kapitan Dranitsyn being much delayed by the strength of the winter ice pack. Other issues were completely unforeseen, like the declaration of a pandemic around the world- just as the spring rotation of participants, crew and re-supplies was planned.

It was this rotation that I was scheduled to be part of part of “Team ECO” and the HAVOC project (Ridges – Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic Ocean). HAVOC is the largest Norwegian project to participate in MOSAiC, led by the Norwegian Polar Institute and funded by the Research Council of Norway. HAVOC aims to investigate sea ice ridges and their role in the Arctic sea-ice system. However, there were moments where it seemed like the MOSAiC field campaign might have been abandoned completely…

How to continue research during a global pandemic

The first hint of the seriousness of coronavirus came after I had attended a polar bear protection training course at the beginning of March in Germany. We were all tested for corona as a precaution, and one of the participants tested positive! I received the news while making a pit stop in the U.K. and immediately went into 2 weeks of quarantine. During those 2 weeks, coronavirus shifted from being a distant issue to a severe threat around the world. Straight after, countries went into lockdown, borders closed and plans for the Spring personnel exchange from Svalbard to the Polarstern were abandoned.

The MOSAiC coordinators, led by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), worked tirelessly to find an alternative despite airports, military facilities and seaports worldwide shutting down. First, we gained special permission to travel to Germany, underwent testing and then quarantined in isolation for two weeks. After I boarded the research vessel Maria S Merian and spent another two weeks sailing to Svalbard, sleeping in a modified container chained to her deck. The Polarstern had to leave the camp and floe temporarily for the personnel exchange. Unfortunately, this was at the cost of capturing the crucial time when the ice begins to melt, but this is a small price to pay compared to abandoning the expedition altogether.

I could hardly believe it when we finally reached the floe. Photos of sea ice from above makes it seem like a vast expanse of white, flat nothingness but actually this landscape is a diverse and beautiful- littered with tall ice blocks, jagged ridges, leads, cracks and melt ponds which change before your eyes. Now, we could finally get stuck into the science!

Home sweet home! Extra accommodation was needed on the Maria S Merian so many of us slept in converted containers chained to the deck. Photo: Jessie Gardner.

Going with the “floe”

Team ECO collected thousands of samples and measured a diverse suite of ecological and biogeochemical properties from snow, ice, and seawater. With the Polarstern as our base, we built onto the time series capturing the variability of the Arctic system. The dynamic nature of the Arctic and how fast the world around you can transform was something that really struck me. There were new cracks opening and closing throughout the floe, as well as melt ponds and streams forming and draining which we would have to jump over or wade through on the way to collect the samples. These events would be accompanied with a cascade of processes and pulses of life within the associated ecosystem. We were only able to capture these through intensive sampling bouts, working on the ice for 24 hours straight, powered by copious amounts of coffee and gummy bears.

You had to be constantly vigilant, since below us was thousands of meters of seawater, and a polar bear could emerge from the sea ice rubble any time! We were lucky during our time on the floe in that we experienced long periods of calm weather with perpetual bright sunshine. Occasionally there were some very foggy days where it was too unsafe to work on the ice due to poor visibility hindering polar bear guarding.

Team ECO during Leg 4 of MOSAiC. Left to right: Celia Gelfman, Allison Fong, Jessie Gardner, Giulia Castellani, Oliver Müller, John Paul Balmonte and Katyanne Shoemaker. Photo: Lianna Nixon.

Breaking boundaries: working together for a common goal

The name MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) reflects the complexity and diversity of the science during the expedition. The MOSAiC field campaign provided an unparalleled opportunity to simultaneously observe and measure the temporal evolution of a number of co-varying Arctic climate system variables from the central Arctic atmosphere, ocean, and ice. With this mindset I was amazed how much more we were able to achieve by working together. For example, it would have been impossible to have collected the number of samples for the HAVOC project that we managed, without others volunteering their precious free time to help. Working across these disciplines and breaking down the boundaries between traditional subjects will give new perspectives on the central Arctic, and it is here that ground-breaking discoveries could be made.

Participants from 70 institutions in 20 different countries took part in the field campaign where everyone worked towards a common goal. Photo: Jessie Gardner.

The expedition has ended, but the research is only just beginning

While the field campaign has ended, MOSAiC is by no means over. Samples are now being shipped to various institutions around the world to be analysed. These, alongside the suite of measurements taken by other teams will likely take the scientific community over a decade to analyse the data collected on MOSAiC. Through virtual meetings we have kept the cross-cutting discussions alive and we already have ideas of combining data and theories in unique and exciting ways. These data and observations will be fundamental to improve our understanding of climate change, and help inform pressing political decisions on climate protection.

On its return in October 2020 the Polarstern offloaded thousands of samples which are being shipped around the world for further analysis. Photo: Jessie Gardner.


Hvem spiser hvem – er det parasittene som avgjør?

Skrevet av Eirik Haugstvedt Henriksen, forskningsgruppa Freshwater Ecology

Du har kanskje hørt om parasitter som gjør mus kåte på katter, forårsaker selvmord hos verten sin eller gjør marihøner om til zombier? Hvis ikke må du sjekke ut denne linken!

Slike beskrivelser er pepret med metaforer og overdrivelser, og heldigvis finnes det ingen parasitter som gjør verten om til hjernespisende monstre. Likevel er det et faktum at mange parasitter får sin vert til å oppføre seg ganske annerledes enn «normalt». Parasitter som endrer adferden til verten, øker gjerne sannsynligheten for at den selv blir videreført til neste vert i livssyklusen. Hva betyr dette for økosystemene våre?

Illustrasjon: Trepigget stingsild.

I mange innsjøer langs kysten av Norge finner vi en liten fisk som heter trepigget stingsild. Den har, som navnet tilsier, pigger på ryggen og magen som en beskyttelse mot å bli spist. Dette forsvaret har den utviklet gjennom evolusjonen over titusenvis av år. På tross av dette er stingsilda et viktig byttedyr for større fisker som ørret og fugler som siland. Faktisk observerer vi at mange stingsild svømmer fryktløst rundt i vannet. De bryr seg ikke nevneverdig om en predator (eller en biolog) nærmer seg, som du kan se i denne videoen.

Stingsilda i videoen er infisert med stingsildmark. Stingsildmarken er avhengig av at stingsilda blir spist av en fugl for å fullføre livssyklusen sin. I fugletarmen produserer den voksne stingsildmarken egg som slippes ut med avføringa til fuglen. Havner dette i en innsjø klekker eggene til små larver som spises av hoppekreps. Hoppekrepsen blir da infisert. Og hvis ei stingsild spiser hoppekrepsen og en fugl spiser stingsilda, er livssyklusen komplett!

Illustrasjon: Livssyklusen til stingsildmark. Parasitten legger egg i fugletarmen, og fuglen er dermed “sluttvert” for denne parasitten.

Veldig mange ulike parasitter utviklet slike kompliserte livssykluser for å videreføre genene sine. Det er blant annet disse vi i ferskvannsgruppa forsker på.

Har slike parasitter egentlig noe å si i et økosystem? Eller er de bare noen kuriøse skapninger som har plass i fascinerende og litt skremmende anekdoter?

Svaret på det siste er et klart nei! Ved å gjøre stingsilda mer sårbar for å bli spist, bidrar stingsildmarken til at en stor energikilde blir lettere tilgjengelig for fuglen (predatoren). Fuglene får i seg masse energi, men blir jo samtidig infisert av mange parasitter. Dermed kan det nok diskuteres om nettoeffekten av dette er positiv eller negativ for fuglene.

Infiserte stingsild blir også et enkelt bytte for andre predatorer, som for eksempel ørret. I ørreten dør stingsildmarken. Ørret er i så måte en blind endestasjon for parasitten.

I Takvatnet i indre Troms ser vi at ørret som spiser mye stingsild kan bli store og veie flere kilo. Men heller ikke her kommer stingsildbeitinga uten kostnader. Som denne videoen viser, er nemlig stingsilda infisert med flere andre arter bendelmark, som måsemark og fiskandmark.

I motsetning til stingsildmark dør ikke bendelmarkene når de spises av andre fisk – de reinfiserer fisken. Man kan finne hundrevis av dem i cyster på fiskens mage. Noen ganger kan infeksjonen bli så stor at cystene også finnes i kjøttet, slik bildet viser.

Gyteklar røye som har spist fisk og blitt infisert med tusenvis av fiskandmark og måsemark som ligger inni cyster utpå innvollene (foto: Eirik Haugstvedt Henriksen).

Som økologer er vi interessert i hvordan energien i et økosystem utnyttes av de ulike organismene som lever der. For å se på dette, lager vi gjerne en oversikt over hvem som spiser hvem – et såkalt næringsnett. Ved å endre adferden til stingsilda, påvirker stingsildmarken strømmen av energi til predatorer. De påvirker også overføringen av andre parasitter til både fisk og fugl. Stingsild med stingsildmark har dermed en helt sentral rolle i næringsnettet.


En mindre studert, men minst like spektakulær parasitt som finnes i våre vann og vassdrag, er marflomarken. Denne bendelmarken infiserer tangloppen marflo, som er kjent som et meget profitabelt byttedyr for bl.a. ørret og røye. Fiskene blir infisert ved å spise infisert marflo, og marflomarken blir voksen i tarmen til fisken hvor den reproduserer. Som vi kan se i denne videoen, vokser parasitten seg diger inni marfloa.

Påvirker denne parasitten marfloas adferd? I Takvatnet og Fjellfroskvatnet har vi samlet marflo som svømmer fritt rundt i innsjøen, og fra magesekkene fra røye. Deretter sammenliknet vi infeksjonene av marflomark i de to gruppene. Det gir en indikasjon på om infisert marflo har større risiko for å bli spist av røye, enn de uten parasitten.

Og svaret er klinkende klart: Andelen infiserte marflo fra fiskemagene var hele åtte ganger høyere enn i innsjøen! Infiserte marflo oppfører seg trolig på en måte som gjør den til et enklere bytte, noe som er forståelig når man tar den relativt enorme størrelsen til parasitten i betraktning. Denne parasitten er ikke farlig for mennesker. Og ettersom den lever inni fisketarmen legger vi som regel ikke merke til den. For røya er likevel infeksjonene trolig forbundet med en betydelig kostnad. Så bør røya unngå å spise infisert marflo? Vi har fått tilgang på røye fra innsjøer i Dividalen, hvor de nesten utelukkende spiser marflo. Røya her er kjent for sin formidable vekst og nydelige kvalitet. Likevel fant vi at fisketarmene var proppfulle av marflomark. Det kan tyde på at fordelene ved å beite marflo oppveier kostnadene ved å bli infisert av parasitten.

Parasitter som endrer adferden til verten påvirker nødvendigvis ikke bare strømmen av energi oppover i næringsnettet. Marflo er en økologisk viktig art. Den bryter ned dødt plantemateriale og gjør denne energien tilgjengelig for predatorer. I tillegg til marflomarken er marfloa infisert av flere andre ulike parasitter som bruker fisk og fugl som sluttvert. Dersom disse påvirker beiteadferden til marfloa, vil det påvirke energistrømmen i hele systemet. Ved hjelp av eksperimenter håper vi i fremtiden å kunne svare på hvordan parasittinfeksjoner påvirker beiteadferden til marflo, snegl og andre verter i ferskvannsystemer.

Som vi ser er parasitter viktige brikker i økosystemene. Studiene vi hittil har gjort har skrapt litt i overflaten av den økologiske betydningen av parasitter. De fleste spørsmålene er ubesvarte. Med klimaendringer forventer vi at flere sørlige vertsarter trekker nordover. Og med disse kommer en rekke nye parasitter. For å forstå hvordan økosystemene vil respondere på slike endringer, må vi kartlegge mangfoldet av parasitter og forske videre på deres økologiske rolle.

Smågnageren er viktigere enn du tror

Skrevet av Eeva Marjatta Soininen, forskningsgruppen Northern Populations and Ecosystems

Smågnagerne er kanskje ikke de mest synlige dyrene når man går på tundraen i Nord-Norge. Men de sykliske svingningene i smågnagernes bestandstetthet utgjør pulsen i hele næringsnettet på tundraen. Smågnagerne er nemlig både viktige byttedyr og spiser mye planter. Så selv om vi ikke ser dem så ofte, så former de mye av plante- og dyrelivet rundt oss.

Norsk lemen er et spesielt viktig byttedyr for fjellrev og snøugle. Yngling av disse rovdyrartene på Varangerhalvøya er avhengig av at de har tilgang på lemen som mat (foto: Rolf. A Ims)

Alle rovdyrene på tundraen spiser smågnagere. Enkelte rovdyr, slik som fjellrev og snøugle, er spesielt avhengige av lemen. De yngler bare når det er toppår for gnagere. Andre rovdyr med mer generalisert diett, slik som rødrev og kråkefugler, yngler også mer i toppår med smågnagere. Dette systemet gjør at toppår for gnagere gir økning i bestandstettheten hos rovdyr. Det igjen gir negative ringvirkninger for andre byttedyrarter, som for eksempel rypa.

Smågnagerne har også betydning for plantelivet. I toppårene spiser smågnagerne til sammen store mengder planter. Det påvirker både plantesamfunnets biomasse og artssammensetning. Vi kan godt si at smågnagere vedlikeholder sine habitat. Både mose og dvergbusker på heiene hadde sett nokså annerledes ut uten gnagertopper.

Hva gjør klimaendringene med dette systemet?

Vi forventer varmere og våtere vintre som følge av klimaendringene. Mildværsperioder med regn om vinteren fører til at snøen smelter og fryser flere ganger. Dermed dannes islag i snødekket. Islag begrenser spesielt gnagernes tilgang til mat under snøen. Dette vil igjen kunne resultere i færre og sjeldnere gangertoppår. Så hva skjer med gnagerne når klimaet forandrer seg? Og hvordan påvirker forandringer i gnagersykluser resten av økosystemet?

Kameraene er plassert i metallkasser som har hull i begge ender. På denne måten er kameraboksen integrert som en del av gnagernes naturlige habitat. Kameraet sitter i taket og ser nedover, og tar bilde av alle dyr som passerer under (foto: Mike Murphy)

For å svare på disse spørsmålene, har vi utviklet et system for kameraovervåking av smågnagere. Arbeidet gjøres i regi av prosjektet Klimaøkologisk Observasjonssystem for Arktisk Tundra (COAT). I prosjektet har vi en egen forskningsmodul med fokus på gnagere.

Vi antar at klimaforandringene hovedsakelig påvirker gnagere via endringer i vinterklimaet. Det gjør det spesielt viktig å forstå hva som skjer under snøen. Nye typer viltkamera gjør det mulig å overvåke både røyskatt og snømus året rundt – også under snøen. Kameraene tar bilder av gnagere og rovdyr som er spesialisert på å spise dem.

Røyskatt med lemenbytte

Bildene gir oss mulighet til å observere dynamikken mellom rovdyr og gnagere, for eksempel å skille nedgang i gnagerbestand som skyldes predasjon fra nedgang som skyldes vanskelige snøforhold. I tillegg registrerer kameraene temperatur, som brukes til å beregne når gnagerne har vært under snøen.

Informasjon om snøforholdene brukes for å modellere effekten av snø på populasjonsdynamikk av gnagere.

Informasjon om smågnagernes bestandstetthet er viktig for en optimal forvaltning av utrydningstruede dyr, som for eksempel fjellreven. Smågnager-syklusene har en indirekte effekt på småvilt, som rypa. Informasjon om smågnagere kan hjelpe å forutsi småviltbestandens utvikling og dermed forvaltningen av småvilt.

Parallelt med utsetting av kamera og innsamling av bilder, har vi også jobbet med automatisering, optimalisering og modellering av bildene. Noen av bildene kan du se her.

I noen lokaliteter er det flere dyr som ofte kommer innom kamera. Her en røyskattfamilie, der tre ungdyr gjentatte ganger var på bildene.